
REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

In this manuscript, Velten and colleagues describe a single cell genomic approach that integrates 

transcriptomics with clonal tracking. By applying their methodology to samples from four patients 

with acute myeloid leukemia, the authors suggest that their combined nuclear and mitochondrial 

genotyping approach enables the de novo identification of pre-leukemic, leukemic, and non-

leukemic clones within the transcriptionally resolved hematopoietic hierarchy. The authors further 

analyze gene expression characteristics of these cells and relate these to healthy progenitor 

populations. The integration of clonal information into single cell genomic readouts is an important 

problem and the study as presented is technically sound. However, the authors weaken the 

manuscript by making inaccurate claims, particularly about what is truly novel in this work. Many 

similar findings have been previously reported by other groups and the value of the paper is 

reduced by misleading statements. Moreover, the authors focus on a heterogeneous group of four 

patients with acute myeloid leukemia and the biological insights that can be gained through such a 

limited set of samples are unclear. Some of the biological implications seem overstated, given such 

a small sample set. 

Major Comments: 

1) Several statements in the manuscript are misleading and should be revised to more accurately 

reflect the capacities and limitations of the methodology. For example: 

“MutaSeq does not rely on previously known nuclear mutations to detect clones”; 

“[…] pre-leukemic, leukemic and non-leukemic clones were identified de novo and distinguished 

unanimously”; 

“However, these protocols suffer from excessive dropouts, are of low throughput, and/or require 

prior knowledge of genomic mutation sites.” 

Generally, single cell RNA-seq approaches inherently suffer from false positive mutations (e.g. high 

error rates of endogenous RNA polymerases during reverse transcription) that have to be 

accounted for. The authors themselves integrate information from exome sequencing results to 

ensure reliable mutation calling. In fact, this appears essential as the detection of nuclear 

mutations is utilized to a priori define clones as pre-leukemic or leukemic. Furthermore, the 

detection of a specific mutation requires the design of primers to flank the cDNA region that 

encompass the mutations of interest. Therefore, it is unclear how clones can be detected without 

previously knowing the nature of specific nuclear mutations, other than potentially relying on 

mitochondrial mutations alone. In the presented context of acute myeloid leukemia however, it 

appears quite essential to be able to detect nuclear mutations. 

Moreover, as the authors show, not every mutation may be reliably detected (e.g. when the gene 

is lowly expressed or with frameshift mutations) and there may be instances, where the 

methodology may not be able to allow unanimous delineation of clonal groups. In this regard 

statements like “de novo” and “unanimously” do not appear justified, and it is unclear how Muta-

seq in fact overcomes the limitations of other approaches. Dropouts, the limited throughput of 

plate-based approaches such as Smart-seq2 (compared to Reference 26), and the need for a priori 

knowledge of nuclear genomic mutations still present limitations that also apply to Muta-seq. 

Therefore, the added value of this approach is unclear and many claims seem overstated. 

2) The authors should discuss how their approach is distinct or superior compared to TARGET-seq 

(Reference 29), which is conceptually similar, is also based on Smart-Seq2, and shows high 

mutation detection efficiency. Potentially Muta-seq has higher multiplexing capabilities to detect a 

larger number of nuclear mutations, but this has not been fully taken advantage of in the work as 

presented. While the integration of somatic mitochondrial mutations adds depth, in theory their 

detection would also be possible using the TARGET-seq approach (as this is Smart-Seq2 based), 

the mitochondrial reads may simply not have been considered at the time. Moreover, integration 

of T cell receptor sequences and BCR-ABL fusion transcripts from cDNA have previously been 



accomplished and integrated with mitochondrial mutation calling with Smart-Seq2 (Reference 31). 

The computational approach may be more unique here, though it is unclear how it compares to 

what has previously been attempted (please see the next comment, as well). 

3) The authors state: 

“Here we take advantage of the observation that bonafide mitochondrial mutations are exclusive to 

individual patients, whereas RNA editing and other base modifications are shared across 

individuals. Only those mitochondrial mutations uniquely occurring in individual patients are used 

for downstream clonal tracking.” 

This is an interesting approach and while the reasoning appears intuitive, it appears to be primarily 

benchmarked against a single exome sequencing dataset (Figure S2e,f). It is also unclear whether 

this approach would make orthogonal DNA-based filtering obsolete or whether it would still be 

recommended. Notably, allele frequencies appear to deviate quite substantially in the scRNA vs. 

exome sequencing data (Figure S2e), e.g. variants with an allele frequency of >0.3 in scRNA are 

only present at allele frequencies of <0.05 in the exome data. This appears to be in contrast to 

allele frequencies of nuclear mutations that appear more concordant (Figure 1f). How do the 

authors explain this discrepancy? Conceivably the exome capture is not designed to also retrieve 

mitochondrial genomic information? How does their computational approach compare in additional 

datasets, e.g. Smart-Seq2 data presented in Figures 5 and 6 from Reference 31? Could the 

mitochondrial variants enhance findings, add resolution to data from Reference 29? 

4) In Figures 4 and 5 the authors provide evidence about how clonal tracking information can 

enhance single cell transcriptomics data. The authors state: 

“Together, these results demonstrate that clonal tracking of single-cell transcriptomes can identify 

the molecular effects of clonal evolution in human, orthogonal to the use of mouse models34,37–

39 but with consistent results.” 

The consistency of results obtained from a limited group of heterogeneous patients is unclear. To 

truly make such a strong statement, the authors would need to examine many additional acute 

myeloid leukemia samples. 

5) Fig. 2e/f displaying the results of the PhISCS approach appear to imply an order on how the 

various mutations were acquired. Many mitochondrial mutations however appear to be shared 

within a single clone and are otherwise not subclonal. It is not intuitive to follow how a temporal 

order may therefore be readily delineated here? 

6) Some parts of the introduction and discussion make inaccurate claims that should be corrected. 

For instance, the authors state, “However, the latter studies have focused on analysis of single-cell 

ATAC-seq data…” However, the value of mitochondrial mutation calling in Smart-Seq2 has already 

been shown in Reference 31. 

Reviewer #2 (Remarks to the Author): 

In this work, Velten et al describe a modified version of the SmartSeq2 protocol, MutaSeq, that is 

able to define clones and associate targeted mutagenic information without affecting the overall 

performance of the original protocol. They analyse four AML patients using this methodology to 

define leukaemic, pre-leukaemic and healthy clones and use the information to get a better 

understanding of the biology of these clones. 

General Comments 

The authors carefully looked into the implications of introducing additional oligonucleotides in the 

amplification reaction for the overall results of the SmartSeq2 protocol and followed an interesting 

approach by associating genomic mutations to mitochondrial mutations. However, there are 



certainly important limitations and concerns: 

1) MutaSeq improves the dropout rate of SmartSeq2 but the dropout rate is still very high for a 

large number of regions (as depicted in figure 1e). The detection rate will strongly depend not only 

of the expression levels of the gene (figure 1d), but also of the distance of the mutation to the 

polyadenylation site and the complexity of the sequence of the gene of interest. The high dropout 

rate makes the association of the genomic and mitochondrial mutations difficult. 

2) The co-detection of genomic mutations is low (4-5 mutations out of 14 per cell according to 

figures 1c and S1a). The authors do not show if this is due to technical performance of the primer 

pool or due to coverage. 

3) Previous knowledge is required for the detection of the specific genomic mutations to be 

analysed. However, it is worth mentioning that MutaSeq would allow retrospective analysis of 

additional mutations. 

4) The method may be difficult to be upscaled to droplet methods, which are strongly biased 

towards either 3’ or 5’ regions, relying in more expensive technologies such as SmartSeq2. 

5) It requires relative deep sequencing (~788,000 reads per cell). 

6) The authors assume that cancer stem cells cannot be separated from healthy stem cells based 

solely on gene expression using a healthy donor as a reference. The authors should investigate if a 

focused analysis of the HSPC compartment would be able to separate the cancer stem cells from 

healthy stem cells in the different patients without relying on mutational information and then 

compare with the mutational information. 

The authors state that the method do not rely on previously known nuclear mutations to detect 

clones. However, although the statement is technically true, they could not define clones using the 

mitochondrial mutations in 2 of the patients (50% of the analysed samples!!). Additionally, the 

association to the genomic mutations is not great because of the dropouts (see below). 

Overall in the manuscript, the Figure legends are quite bare and not very descriptive which makes 

the interpretation difficult and more laborious. A much more detailed description of the figures is 

needed in the figure legends, clearly describing what is shown in each panel and how the data was 

obtained. Definition of the scales in the plots is also typically absent. The output for all the 

comparisons performed in this work should also be included (e.g. comparison of CD34- blasts to 

HSC/MPP-like cells), all data relevant to the article should be deposited (including DNA exome 

results for colony assays in P1) and the code must be made available. 

Specific Comments 

1) The authors indicate in the introduction section that “previous protocols suffer from excessive 

dropouts, are of low throughput and /or require prior knowledge of genomic mutation sites”. This 

is also the case for this method as well. 

2) S1b should be plotted in a normalised way, to be able to compare how many reads are on 

target (for example in reads/100,000 of mapped reads) per cell. 

3) Figure legends of figures S1c and S1d should explicitly indicate the meaning of the 

concentrations. 

4) Figure 1e.- Define “reference” vs “mutant”. Why does the proportion of the call of the mutation 

change drastically according to the method used in some genes, such as SRSF2? How confident 

are the authors that the “reference” or “mutant” call is not to affected by dropouts of the other 

allele? 

5) Why is it that MutaSeq and SmartSeq2 are drastically over estimating some of the point 

mutations in Figure 1f? 

6) The authors state that both methods underestimate the abundance of frameshift mutations, 

likely due to nonsense mediated decay. Do the authors actually have evidence for this claim? 

7) The authors should tone done the statement “MutaSeq efficiently covers both genomic target 

sites and the mitochondrial genome in single-cell RNA-sequencing experiments”. The method 

improves the results when compared to SmartSeq2 but it has a high dropout rate in a large 

number of genes. 

8) The authors define preleukaemic and leukaemic mutations but they should better 

explain/demonstrate/reference the rationale behind the assignment for each mutation. Also, the 

first description of the status affiliation of the mutations appears at the very end of heading 



“Simultaneous mapping…” but there are references to this classification and separation much 

earlier in the text. Please clarify earlier on to gain in clarity of the article. The authors also mention 

that leukaemic cells often exist in a cell state that is similar to healthy HSC/MPPs. Could it be 

because these are cells that contain the mutation but they are not transformed into leukaemic 

cells? 

9) The detection of the DNMT3A mutation present multitude of dropouts and the association values 

to the mitochondrial mutations are very low. Therefore it is difficult to make any statements or 

claims about the preleukaemic status of cells in patient P2. 

10) It is unclear in the main text which cells were analysed from which patient. It would be useful 

to have in the main text a brief description of the cells sorted and the quantity of each type used 

for the analysis. 

11) Include percentages in the boxes in Figure S3a. 

12) Why weren’t all populations in Figure S3a analysed for the 4 patients? E.g. Cd34-Lin+ cells 

were not analysed for P1 or P4? Why several of the gates are different between the healthy control 

and patients, such as FSC vs SSC (healthy) or CD34+ gate for patient 3. Can the authors explain 

the rationale? 

13) An additional UMAP plot should be added to the supplementary figures where cells are 

coloured according to the gating strategy for each patient. 

14) Please indicate the methodology followed to obtain the clusters in figures 2b, 2c and 2d. 

15) Could the authors show an example of how the data looked without the mitochondrial 

mutations included (Fig 2b and d)? 

16) The authors claim that there are mutually exclusive mutations such as KLF7 and CEBPA. 

However, it is difficult to define the mutation status of KLF7 in P1 and P3 (or TET2 and even SPEN 

in other patients) due to the high rate of dropouts (as expected from data in Figure 1). How 

certain can the authors be of this claim? 

17) The reference or demonstration of the fact that only bona fide mitochondrial mutations are 

specific to individuals should be shown. 

18) The description of the analysis of mitochondrial mutations is not completely clear. In 

particular, I find confusing the sentence “Individual cells were then called as mutant in these sites 

if at least 10% of the reads from that cell supported a minor allele.”. Please clarify. 

19) The information relative to the genomic mutation status for TET2 and SPEN is not used in 

Figure 2 for P1. Was this due to the very high rate of dropouts? 

20) The “healthy” clone of patient P1 is clearly negative for preleukaemic mutation SRF2 but the 

cells for this clone also have the common characteristic of being mostly dropouts for Cebpa. It 

would be interesting to increase the number of SRF2-negative colonies in the DNA-seq (Figure 2d) 

to fully verify that they are CEBPA-negative. 

21) The legend of figure S2e is not complete. 

22) Key legends in figure S2f are swapped. 

23) Add the meaning of grey dots in key legend of figure S2g. 

24) What cell type is the pale yellow cluster in Figure 3a? 

25) The population within Fig 3a labelled as “unclear” would be better labelled as “unknown” or 

“unclassified”. 

26) It is difficult to distinguish HSC/MPP population from others in the healthy donor in Fig 3c. 

Please use a different colour. 

27) It is unclear the cells that were used to perform the comparison in Figure 3g. Are the cells 

within the pale yellow cluster included in the category “CD34+ blasts” or only the cells within the 

dark yellow cluster? Please specify and justify the selection. In a similar way, can the authors 

specify which cells were used for the comparisons in figure 3h? According to Table S3, 162 genes 

obtained a FDR < 0.1; however, the Venn diagram in Figure 3h shows 639 genes. How is that 

possible? According to the Venn diagram in Figure 3h, there are much fewer upregulated genes for 

Cd34- blasts. Is this population then more similar to the HSC/MPP? What about the downregulated 

genes? 

28) Where is the unsupervised analysis to separate HLF+, GATA2+, Flt3+ cells? Please show the 

output of the clustering. Also include RNA expression of genes HLF and Flt3 (in addition to surface 

marker) in fig S4a. 

29) Gene name S1008 should be included in text as gene for calprotectin. 

30) It is very difficult to appreciate the differences in expression levels in Figure S4a. A different 

colour code should be used. 

31) Would it not be better to show a specific marker which highlights the identification of each 



lineage in FigS4a? Along the same lines, Tal1 can be removed as very few cells seem to express 

this transcription factor. 

32) The statement “Furthermore, all patients retain cells highly similar to healthy HSCs.” should be 

modified to reflect that it is to a different degree in the different patients. 

33) Please confirm what the dashed line (eclipse) is highlighting in figures 4a to 4d. It is shifted in 

patients P3 and P4. 

34) The authors do not show sufficient data about their capacity to detect IDH2 nor NUP188, in 

terms of dropout proportion. The data in this respect in figures 4c and 4d is very difficult to 

appreciate. Please include similar data to figure 1e. 

35) In Figure 4c, it appears as if the higher allele frequency for the leukemic cells (as IDH2) is in 

the lymphoid cluster (T cells/NK cells) but figure 4e indicates that 50% of the cells in the T-cell 

cluster are non-mutated. How is this possible? 

36) The authors state that “Across patients, leukemic cells were not observed in lymphoid (B, NK, 

T) lineages” yet figure 4e clearly shows the presence of leukemic cells in the T cluster of cells 

patients P1, P2 and P3. 

37) How significant are the claims that CD96 is expressed higher in leukemic P3, when there are 

only approximately 8 cells within this category? 

38) The authors need to take care, they describe the SRSF2 mutation as pre-leukemic but then 

subsequently state that “In patients P1 and P3 (SRSF2 mutated), leukemic cells”. I believe that 

the authors mean that P1 and P3 have the SRSF2 mutation, but it is misleading as currently 

stated. 

39) The authors claim in P4 the ability to contribute to the erythroid lineage is restricted to pre-

leukemic and non-leukemic clones, however figure 4e show the presence of leukaemic cells in the 

MEP/erythroid cluster. 

40) The authors claim that in P4 mutations were only observed in CD34- blasts (and so is reflected 

in figure 4e) however, the UMAP in Fig 4d shows that the allele frequency for NUP188 is 1.0, with 

high log10 read counts in the HSC/MPP region of the UMAP. Can the authors please explain this 

and clarify in the text. 

41) In Figure 4e it is important to add information about the total number of cells in each category 

for each patient. 

42) Also in Figure 4e, I wonder if the category “Blasts (CD34- HBZ+)” is labelled correctly since 

according to figure S4a the expression of HBZ is very restricted outside some CD34+ blasts. 

43) Figure 4e shows that all cells in HSC/MPP compartment of patient P4 are “non AML”. However, 

figure 4d shows allele frequency close to 1 for NUP188 for most cells in the HSC/MPP 

compartment. How can this be possible? 

44) The authors should tone down the statement “Together, these results demonstrate that 

leukaemic mutations may initiate differentiation blocks at various levels.” Although the results 

suggest that this could be the case, no additional experiments to demonstrate such blockage in 

differentiation were performed. 

45) In figure 5a, the text indicates “high” expression of HFL but data shows barely below 1. Please 

define the scale of expression. 

46) In Figure 5a there seems to be a typo in the legend, since it seems to relate to patient P2 and 

not to patient P3. 

47) In Figure 5a, indicate number of cells for each category. It looks like there are very few cells 

which could affect the interpretation. 

48) How many cells are involved in the comparisons showed in figure 5b? Are enough cells to 

reach enough statistical power to make those comparisons? This is a general concern across all 

volcano plots shown in the article and should be addressed. 

49) It is difficult to appreciate which genes are differentially expressed in figure 5b. Because of the 

scale, it looks like Hoxb3/CD96 have a logFC close to 0. Indicate the thresholds in the figure and 

include full results as supplementary data. 

50) The authors discuss the role of KLF7 mutation in HSPC cells from patient P1 (Fig 5d). How 

many cells are included in the each category of the comparison? Have they also looked at the 

CEBPa clone, as these cells also occupy the same cellular population/state? 

51) Include full results for the comparison of pre- and leukaemic cells. Indicate the number of cells 

in each category. Also, was it done by patient and/or merging patients? 

52) It would be interesting to know how many cells were included in each category of the 

comparison of (pre-)leukemic vs non-AML cells. It is peculiar that so few genes came up as 

differentially expressed for P2 taking into account that these cells appear in very different locations 



of the UMAP. Also, it is curious that only FOS is upregulated out of the rest of AP1 factors. 

53) Please include in Table 1 the data regarding to which regions were targeted for patients P2 and 

P4. Describe the nature of highlighted genes in this table. 

54) Consistency is required throughout, the authors use pre-leukemic and preleukemic, one should 

be chosen and used throughout the manuscript. 

55) After multiple occurrences of a colon in the text a capital letter is used, this should be 

corrected. 

56) The authors should consider to re-order the panels within the figures and in some cases the 

figures themselves to ensure that they are referred to in a chronological order throughout the text 

(for example figure S2c is mentioned after S2g, fig S3 is mentioned before S2). 

57) Maybe “Unanimously” should be swapped to “unequivocally”. 



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
In this manuscript, Velten and colleagues describe a single cell genomic approach that integrates transcriptomics 
with clonal tracking. By applying their methodology to samples from four patients with acute myeloid leukemia, the 
authors suggest that their combined nuclear and mitochondrial genotyping approach enables the de novo 
identification of pre-leukemic, leukemic, and non-leukemic clones within the transcriptionally resolved 
hematopoietic hierarchy. The authors further analyze gene expression characteristics of these cells and relate 
these to healthy progenitor populations. The integration of clonal information into single cell genomic readouts is 
an important problem and the study as presented is technically sound. However, the authors weaken the 
manuscript by making inaccurate claims, particularly about what is truly novel in this work. Many similar findings 
have been previously reported by other groups and the value of the paper is reduced by misleading statements. 
Moreover, the authors focus on a heterogeneous group of four patients with acute myeloid leukemia and the 
biological insights that can be gained through such a limited set of samples are unclear. Some of the biological 
implications seem overstated, given such a small sample set. 
 

We thank the reviewer for this summary of our work. To avoid misleading statements on novelty, we 
have carefully gone over the text and now more clearly define the precise advances made by our study, 
as compared to previous publications (in particular, Ludwig et al., Cell 2019 for the identification of 
clones from single-cell RNA or ATAC sequencing data, and Rodriguez-Meira, Molecular Cell 2019 for 
nuclear mutation calling). To summarize key changes made in the revised version (see below for a 
detailed response to each of the reviewer’s points): 

• While our approach contains technical advances over existing methods, key novelty lies in the 
adaptation of these methods to identify and characterize cancer stem cells, which we now make 
clearer in our revised abstract, introduction and discussion. 

• Regarding technical novelty in the context of clonal tracking, as suggested by the reviewer we 
have further investigated the ability of our approach to identify and characterize clones de 
novo in an unsupervised manner (New Supp. Figures 4,6, and a new subchapter in the 
results section).  

• We believe we are the first to provide the required computational routines for the de novo 
identification and characterization of clones from single-cell RNA-seq data. We now provide an 
R package mitoClone for the community that implements our entire computational workflow and 
we demonstrate that this package can be used to identify and characterize clones in Smart-
seq2 or MutaSeq data of single patients, with no need for a reference (New Supp. Figure 4). 

• We have expanded the discussion of the technical advances made by our study, as well as its 
limitations (summarized in new Supp. Figure 9).  

• Finally, we have made it clear in the discussion and results part of the manuscript that our 
analysis of a small patient population represents a demonstration of MutaSeq’s power, but that 
studies in a larger cohort are required to assess their general validity and relevance to AML. 

  
 
Major Comments: 
 
1) Several statements in the manuscript are misleading and should be revised to more accurately reflect the 
capacities and limitations of the methodology. For example: 
“MutaSeq does not rely on previously known nuclear mutations to detect clones”; 
“[…] pre-leukemic, leukemic and non-leukemic clones were identified de novo and distinguished unanimously”;  
“However, these protocols suffer from excessive dropouts, are of low throughput, and/or require prior knowledge 
of genomic mutation sites.” 
 
Generally, single cell RNA-seq approaches inherently suffer from false positive mutations (e.g. high error rates of 
endogenous RNA polymerases during reverse transcription) that have to be accounted for. The authors 
themselves integrate information from exome sequencing results to ensure reliable mutation calling. In fact, this 
appears essential as the detection of nuclear mutations is utilized to a priori define clones as pre-leukemic or 
leukemic. Furthermore, the detection of a specific mutation requires the design of primers to flank the cDNA 
region that encompass the mutations of interest. Therefore, it is unclear how clones can be detected without 
previously knowing the nature of specific nuclear mutations, other than potentially relying on mitochondrial 
mutations alone. In the presented context of acute myeloid leukemia however, it appears quite essential to be 
able to detect nuclear mutations. 
 
Moreover, as the authors show, not every mutation may be reliably detected (e.g. when the gene is lowly 
expressed or with frameshift mutations) and there may be instances, where the methodology may not be able to 
allow unanimous delineation of clonal groups. In this regard statements like “de novo” and “unanimously” do not 
appear justified, and it is unclear how Muta-seq in fact overcomes the limitations of other approaches. Dropouts, 



the limited throughput of plate-based approaches such as Smart-seq2 (compared to Reference 26), and the need 
for a priori knowledge of nuclear genomic mutations still present limitations that also apply to Muta-seq. 
Therefore, the added value of this approach is unclear and many claims seem overstated. 
 

We appreciate these important points, and have removed misleading statements from the revised 
manuscript and more carefully explained the capacity and limitations throughout.  
 
Importantly, we have added further evidence to support the point that, albeit only in the presence of 
mitochondrial somatic variability, our approach allows for a de novo identification and characterization of 
clones with no reliance on prior knowledge of nuclear mutations. We have included a new sub-chapter 
and a new supplementary figure S6 to the results (lines 200-224): 
 
We next investigated if the use of mitochondrial somatic variants enables the identification and 
characterization of clones without prior knowledge of nuclear mutations. To that end, we made use of a 
dataset from patient P1 generated without amplification of nuclear sites (i.e. standard Smart-seq2). A 
clear clonal structure was identified in an unsupervised manner based solely on mitochondrial variants 
(Figure S6a). In order to examine whether the presence of somatic genetic variability is associated with 
the different clones, we then queried the mutational status of 13,797 genomic sites annotated as mutated 
in AML in the COSMIC database37 using a beta-binomial model (see Methods). This unsupervised 
analysis revealed a highly significant association of the SRSF2 P95H mutation with the leukemic and 
pre-leukemic sub-clones (Figure S6b,c). Their malignant nature was further evidenced by a markedly 
reduced ability to contribute to the T cell lineage (Figure S6d and see also below).  
 
To further demonstrate our ability to identify clones de novo, we highlight the identification of an 
expanded CD3+ T-cell clone in P1, and a clonal expansion of non-leukemic cells in P2 (Figure 2e,f). 
These clones would have been missed by approaches relying on genomic mutations alone27,28,31.  The 
latter event in particular is of interest, since these cells were not associated with the pre-leukemic 
DNMT3A mutation. By again querying sites from the COSMIC database37 using a beta-binomial model, 
we identified that they had uniquely acquired a mutation in the RPL3 gene (Figure S6b,e). These results 
suggest that this clonal expansion event is independent of the leukemia and associated with the 
acquisition of unrelated nuclear mutations.  
 
Taken together, these results demonstrate that our approach can identify and characterize clones de 
novo without prior knowledge of nuclear genomic mutations. The mitoClone package implements all 
routines for clonal clustering and mutation calling. 
 

 
Response Figure 1: De novo calling and characterization of clones. Included in the manuscript as Figure S6. For an 
implementation and for reproducing the computations, see the package vignettes of the mitoClone package. a.
 Unsupervised clustering of mitochondrial mutations identified from a Smart-seq2 dataset of n=672 cells from 
patient P1. b.De novo identification of nuclear somatic variants associated with the clonal labels from panel a. 
Difference in Aikake’s Information Criterion (AIC) is shown for a comparison between a model where allele 
frequencies are the same across all cells, and a model where allele frequencies differ between clones. Red line 
highlights the intercept. See Methods section Analysis of mitochondrial mutations and reconstruction of clonal 



hierarchies. c. Boxplot of single-cell allele frequencies for the SRSF2 P95H mutation summarized between clones 
(Smart-seq2 data). d. Bar plot of contribution of clones to T cells identified from unsupervised clustering of gene 
expression data (see also Figure 3). e.Boxplot of single-cell allele frequencies for the RPL3 mutation 
(COSV53365368) summarized between clones (MutaSeq data). Red dashed line highlights the allele frequency of 
the mutation identified in exome sequencing. 

 
Whether a statistically confident distinction between clones is possible depends on coverage, but more 
crucially on the presence of mitochondrial somatic variability. In all cases where somatic variability was 
identified (P1, P2, and additional datasets from Ludwig et al., see also below), the identification of clones 
was statistically unanimous, and the majority of cells could be assigned to clones with high statistical 
confidence (see Figure 2 and also S3b for a more focused analysis). As mentioned by the reviewer, in 
other instances (P3, P4), no unanimous assignment was possible. Accordingly, we now clearly state in 
the manuscript that in the absence of mitochondrial variability, only qualitative statements can be drawn, 
comparable e.g. to what is possible with GoT-seq (Nam et al., ref 28). 
 
Line 403-406: In the absence of mitochondrial somatic variation, the MutaSeq protocol can only be used 
to draw qualitative statements on clonal differentiation capacities (similar to ref. 28, and with an 
improvement over smart-seq2), but due to dropout, neither enables the statistically confident assignment 
of cells to clones, nor differential expression testing between clones. 

 
We now also present this limitation more explicitly in the introduction and results sections (lines 93, 198). 
We also consistently use the term ‘statistically clear’ (instead of ‘unanimous’) only when referring to cells 
assigned to clones using mitochondrial information:  
 
Line 91-93: Here, we introduce MutaSeq, a workflow that amplifies nuclear mutations from cDNA, and 
mitoClone, a computational tool that achieves high-confidence clonal assignments and de novo 
discovery of clones using mitochondrial marker mutations when available. 
 
Line 196-198: Taken together, our approach allows for the identification of putatively leukemic, pre-
leukemic, and healthy clones and can assign cells to clones with high confidence if mitochondrial 
somatic variation is present. 
 
Line 347-348: In the presence of mitochondrial somatic variability, our approach does not rely on 
previously known nuclear mutations to detect clones. 
 
Line 402-403: The major limitation of our pipeline is that it requires natural somatic variability to resolve 
clones at high confidence. 
 
And we have reformulated the statement on previous methods in the introduction: 
 
Line 86-89: However, the application of these methods to characterize leukemic stem cells has not been 
demonstrated, and in particular requires an ability to reliably detect clonal expansion events, to associate 
clinically-relevant coding mutations to clones with high confidence, and to draw statements on changes 
in gene expression between clones. 
 

 
2) The authors should discuss how their approach is distinct or superior compared to TARGET-seq (Reference 
29), which is conceptually similar, is also based on Smart-Seq2, and shows high mutation detection efficiency. 
Potentially Muta-seq has higher multiplexing capabilities to detect a larger number of nuclear mutations, but this 
has not been fully taken advantage of in the work as presented. While the integration of somatic mitochondrial 
mutations adds depth, in theory their detection would also be possible using the TARGET-seq approach (as this 
is Smart-Seq2 based), the mitochondrial reads may simply not have been considered at the time. Moreover, 
integration of T cell receptor sequences and BCR-ABL fusion transcripts from cDNA have previously been 
accomplished and integrated with mitochondrial mutation calling with Smart-Seq2 (Reference 31). The 
computational approach may be more unique here, though it is unclear how it compares to what has previously 
been attempted (please see the next comment, as well). 
 

TARGET-seq exists in two variants, full-length TARGET-seq and 3’ TARGET-seq. For full-length 
TARGET-seq the detection of mitochondrial variability is certainly possible in theory, however the 
published data contains an insufficient numbers of cells (<96) reflecting the low throughput of this 
protocol. 3’ TARGET-seq is the main focus of reference 29 and lacks coverage of mitochondria due to its 
3’ bias (see modified figure S1j, also shown below).  
 



 
Response Figure 2. Logarithmic coverage of the mitochondrial genome compared between different 
methods27,31,66. For the plot on the right, coverage was normalized to the number of reads aligning to the 
transcriptome. Included in the manuscript as figure S1j. 

Therefore, these existing datasets cannot exploit mitochondrial mutations to annotate or discover clones. 
For example, a de novo discovery and characterization of clones in the absence of prior knowledge, 
such as presented in Figure S6, would not have been possible. We now describe the distinctions of our 
approach from TARGET-seq and other methods in the discussion and provide a summary in the new 
supplementary figure S9: 
 
Lines 392-400: Finally, while TARGET-seq addresses the limitation of dropout of nuclear sites, 
depending on the implementation it does not offer sufficient mitochondrial coverage, or is of very limited 
throughput. Of all methods available to date, the approach presented here converges on crucial aspects, 
specifically: a) high mitochondrial coverage, allowing us to identify benign expanded clones de novo, 
even in the absence of known genetic markers, b) decreased dropout of relevant genomic mutations, 
permitting the association of clones with genomic mutations, if present and c) a highly confident 
assignment of cells to clones, enabling quantitative analyses of clone-specific gene expression (Figure 
S9). These capabilities expand the potential applications of our approach to the study of clonal dynamics 
during ageing and oncogenesis beyond the hematopoietic system. 
 

 
Response Figure 3: Overview of capabilities of MutaSeq compared to related methods. Included in the 
manuscript as Figure S9. SmartSeq: ref. 33,53. TARGET-seq: ref. 31. GoT-seq: ref. 28. “0” means 
theoretically possible, but unproven and/or very limited. 

 
Regarding the suggestion that potentially, Muta-seq might have higher multiplexing capabilities to detect 
a larger number of nuclear mutations, we have benchmarked multiplexing capacity in Figure S1e and 
found an optimal performance of MutaSeq when including up to 20-30 primers. However, a similar 
analysis is not available for TARGET-seq, making any comparison difficult. 
 
Regarding the comments on Reference 33 (formerly ref. 31, Ludwig et al.), please see the next point. 
 
 

 
3) The authors state:  



“Here we take advantage of the observation that bonafide mitochondrial mutations are exclusive to individual 
patients, whereas RNA editing and other base modifications are shared across individuals. Only those 
mitochondrial mutations uniquely occurring in individual patients are used for downstream clonal tracking.” 
 
This is an interesting approach and while the reasoning appears intuitive, it appears to be primarily benchmarked 
against a single exome sequencing dataset (Figure S2e,f). It is also unclear whether this approach would make 
orthogonal DNA-based filtering obsolete or whether it would still be recommended. Notably, allele frequencies 
appear to deviate quite substantially in the scRNA vs. exome sequencing data (Figure S2e), e.g. variants with an 
allele frequency of >0.3 in scRNA are only present at allele frequencies of <0.05 in the exome data. This appears 
to be in contrast to allele frequencies of nuclear mutations that appear more concordant (Figure 1f). How do the 
authors explain this discrepancy? Conceivably the exome capture is not designed to also retrieve mitochondrial 
genomic information? How does their computational approach compare in additional datasets, e.g. Smart-Seq2 
data presented in Figures 5 and 6 from Reference 31? Could the mitochondrial variants enhance findings, 
add resolution to data from Reference 29? 
 

We thank the reviewer for this suggestion. We have now evaluated our computational approach on 
publicly available datasets from reference 33 (formerly ref. 31, Ludwig et al.). Reference 31 (formerly ref. 
29, TARGET-seq) is discussed in response to the reviewer’s previous point. 
These analyses are included in a new figure S4 (see also below) and described in the results as follows: 
 
Lines 168-174: We further analyzed various control datasets with known associations between 
mitochondrial mutations and clones33 to validate that this approach enables the detection of relevant 
mitochondrial mutations without a need for a DNA-based reference, and further enables the 
unsupervised identification of clones (Figure S4d-f). We have implemented all the required filtering and 
blacklisting routines required for the identification of high-confidence somatic mitochondrial variants in 
the mitoClone R package ( https://github.com/veltenlab/mitoClone ). 
 
The figure legend of figure S4 provides more detail: 
 
a. Overview of the computational strategy used. In the case of data from a group of individuals, sites 
were filtered based on coverage and annotated as ‘mutant’ if a specified fraction of reads deviates from 
the reference allele. Sites were then excluded as likely RNA editing events if the same mutation was 
observed in more than one individual. Alternatively, in the case of data from a single individual, similar 
coverage based filtered were applied and data was then filtered against a blacklist created from a cohort. 
d. De novo variant calling and clustering of a CML patient dataset. Data from ref. 66 were processed and 
clustered with the mitoClone package. The same variant filtering approach used on the patients from our 
study was used. Thereby, two patients with substantial mitochondrial variability were identified and in 
both cases clones associated with the BCR-ABL mutation were resolved in an unsupervised manner. 
The analysis by ref. 33 had missed one of these patients, did not achieve an unsupervised separation of 
BCR-ABL+ and BCR-ABL- cells in either case (Figure 7G in ref. 33), and instead relied on stratifying 
cells by the existing BCR-ABL label (Figure 7J in ref. 33). 
 
To extend the utility of our approach, we additionally sought to modify it such that it would also work on 
datasets from single patients (and not groups of patients). We therefore compiled a blacklist of false 
positive variants (i.e. variants shared between individuals) from our patient cohort, and attempted filtering 
datasets from single individuals based on this blacklist. Again, these results are documented in figure S4: 
 
e. De novo variant calling and clustering of single cells from hematopoietic colonies derived from a single 
individual. Data from Figure 5 of ref. 33 were processed and clustered with the mitoClone package. Left 
panel shows unsupervised clustering of mutations identified by the mitoClone package, right panel 
quantitatively compares unsupervised clustering and colony labels. 27 of the colonies were identified in 
an unsupervised manner. The analysis by ref. 33 had identified approximately half that number by 
unsupervised analyses (their Figure 5E), and using supervised methods identified mitochondrial 
mutations associated with 33 clones (their Figure 5H). 
f. De novo variant calling and clustering of single cells from a single colorectal cancer patient. Data from 
Figure 7 of ref. 33 were processed and clustered with the mitoClone package. Clustering structure 
obtained by PhISCS is shown and compared to the clustering presented in ref. 33 (row labeled ‘original’), 
which was based on variant filtering using a DNA-seq based reference. Despite the different filtering 
approaches, our unsupervised clustering separated the clusters identified by Ludwig et al. and identified 
additional variability. 
 
Data for Ludwig et al., Figure 6 E-G are only accessible through a data access agreement with Beijing 
university, who did not respond to our data access request. 
 
The poor correlation between scRNA-seq based and exome-based allele frequencies (Figure S4b,c, 
formerly figure S2e,f) was expected, since the sequencing was performed on different starting 



populations (exome: total bone marrow, RNA-seq: enrichment for CD34+ cells). However, there is 
qualitative overlap in the mutations the methods were able to identify. This information was added to the 
figure legend: 
 
b. Allele frequencies and coverage of mitochondrial mutations from P2 in single-cell RNA-seq data 
compared to whole exome sequencing data (WES). Sites with less than 10 reads per cell in RNA-seq 
were classified as ‘not expressed’. Variants that were observed in WES were classified as ‘validated’ 
(circles), other variants were classified as ‘not validated’ (triangles). The low correlation between the two 
datasets is likely due to different starting cell populations (WES: Total bone marrow, single cell RNA-seq: 
enriched for CD34+ cells), and data are only used for qualitative statements (presence/absence of 
mutations). 
c. Bar charts summarizing the classifications from panel b. Left, mutation sites are split by their label 
based on the mitoClone pipeline; right, sites are split by whether they were detected in WES. 

 
These results, together with the validation of the clonal tree for P1 by colony DNA sequencing (Figure 
2d), demonstrate that our filtering approach is reliable and allows for the analysis of mitochondrial 
variability in the absence of a DNA-based reference.  

 

 
Response Figure 4: Calling of mitochondrial somatic variants in the absence of a DNA-based reference. Corresponding to 
Supplementary figure 4. See above for legend. 

 
4) In Figures 4 and 5 the authors provide evidence about how clonal tracking information can enhance single cell 
transcriptomics data. The authors state:  
 
“Together, these results demonstrate that clonal tracking of single-cell transcriptomes can identify the molecular 
effects of clonal evolution in human, orthogonal to the use of mouse models34,37–39 but with consistent results.” 
 
The consistency of results obtained from a limited group of heterogeneous patients is unclear. To truly make such 
a strong statement, the authors would need to examine many additional acute myeloid leukemia samples. 
 

We agree with the reviewer and apologize for the overstatement. The point that we wanted to make is 
that the technological advances made by single-cell multi-omics and the specific approach presented in 



the manuscript brings us a step further in the attempt to study molecular effects of clonal evolution in 
humans, which has previously been possible in mouse models only. We have now rephrased our 
statement to: 
 
Lines 311-313: In sum, we have used a small heterogeneous patient cohort to demonstrate, as a proof-
of-concept, that the acquisition of specific mutations is frequently linked to an altered gene expression 
program, which is consistent with data obtained from mouse models. 
 
Lines 324-326: Taken together, these results demonstrate the ability of MutaSeq and mitoClone to 
delineate developmental and molecular defects of clonal evolution caused by leukemic and pre-leukemic 
mutations. 

 
 
5) Fig. 2e/f displaying the results of the PhISCS approach appear to imply an order on how the various mutations 
were acquired. Many mitochondrial mutations however appear to be shared within a single clone and are 
otherwise not subclonal. It is not intuitive to follow how a temporal order may therefore be readily delineated here? 
 

 We apologize for this confusion. We did apply a statistical approach to group mutations into clones (now 
added to the methods, line 552-566 and available in the mitoClone package), based on which we color-
coded the tree. Within a clone, we do not see strong statistical support for a specific order. We have 
therefore grouped the mutations from each clone together in figures 2e,f. 

 
 
6) Some parts of the introduction and discussion make inaccurate claims that should be corrected. For instance, 
the authors state, “However, the latter studies have focused on analysis of single-cell ATAC-seq data…” 
However, the value of mitochondrial mutation calling in Smart-Seq2 has already been shown in Reference 31. 
 

We thank the reviewer for pointing this out. As detailed above, we have now better clarified the advance 
over reference 31 (now ref. 33). This statement has been rephrased to: 
 
Lines 86-89: However, the application of these methods to characterize leukemic stem cells has not 
been demonstrated, and in particular requires the ability to reliably detect clonal expansion events, 
associate clinically-relevant coding mutations to clones with high confidence, and draw statements on 
gene expression changes between clones. 
 
As also summarized in reply to other reviewer comments, we have critically reviewed all claims drawn by 
the manuscript, and either added further evidence to support them, or chosen alternative formulations.  

 
 
 
Reviewer #2 (Remarks to the Author): 
 
In this work, Velten et al describe a modified version of the SmartSeq2 protocol, MutaSeq, that is able to define 
clones and associate targeted mutagenic information without affecting the overall performance of the original 
protocol. They analyse four AML patients using this methodology to define leukaemic, pre-leukaemic and healthy 
clones and use the information to get a better understanding of the biology of these clones. 
 

We thank the reviewer for this summary of our work.  
 
 
General Comments 
 
The authors carefully looked into the implications of introducing additional oligonucleotides in the amplification 
reaction for the overall results of the SmartSeq2 protocol and followed an interesting approach by associating 
genomic mutations to mitochondrial mutations. However, there are certainly important limitations and concerns: 
 
1) MutaSeq improves the dropout rate of SmartSeq2 but the dropout rate is still very high for a large number of 
regions (as depicted in figure 1e). The detection rate will strongly depend not only of the expression levels of the 
gene (figure 1d), but also of the distance of the mutation to the polyadenylation site and the complexity of the 
sequence of the gene of interest. The high dropout rate makes the association of the genomic and mitochondrial 
mutations difficult. 

 
We agree that there is substantial dropout, and we tried to openly discuss and analyze this point 
throughout the manuscript (line 152-157): 
 



While some statements on clonal hierarchies could be drawn solely based on calls of these nuclear 
somatic mutation (Figure S3a), the relatively high dropout of these sites impeded robust assignments of 
cells to clones (Figure S3b-d). Moreover, the result was biased by the expression levels of the mutated 
genes of interest: In cells with low expression, dropout was higher, leading to a higher fraction of false 
negative calls, i.e. false classifications of mutant cells as reference (Figure S3c-d and see also figure 
1e).  

  
Our data demonstrate that beyond expression level, the type of mutation (frameshift, nonsense or 
missense) affects dropout (line 123-124). Although our data do not provide statistical evidence for an 
effect of distance from poly-A site or sequence complexity on dropout, these are certainly valid points 
and we now mention them explicitly (line 124-126). 
 
We agree that the association of the genomic and mitochondrial mutations can be challenging, especially 
if the target gene is not highly expressed or if the mutation causes degradation of the transcript. 
However, in many cases making these association is possible. With the exception of two frameshift 
mutations, all mutations shown in Figure 1e are significantly associated with mitochondrial mutations 
(see updated Figure S5a, also shown below). Further evidence is provided in the response to specific 
point 9 below. Finally, we take into account dropout rates in the statistical model used for inferring clonal 
structure (adapted from Malikic et al., Genome Research 2019, now explicitly referenced in the main 
text, line 177). Thereby, we are able to confidently associate individual cells to clones and perform 
quantitative analysis of clone-specific gene expression. We have now emphasized the point that 
statistically confident clonal assignments are only possible with MutaSeq when mitochondrial somatic 
variability is present in introduction, results and discussion: 
 
Line 91-93: Here, we introduce MutaSeq, a workflow that amplifies nuclear mutations from cDNA, and 
mitoClone, a computational tool that achieves high-confidence clonal assignments and de novo 
discovery of clones using mitochondrial marker mutations when available. 
 
Line 196-198: Taken together, our approach allows for the identification of putatively leukemic, pre-
leukemic, and healthy clones and can assign cells to clones with high confidence, if mitochondrial 
somatic variation is present. 
 
Line 347-348: In the presence of mitochondrial somatic variability, our approach does not rely on 
previously known nuclear mutations to detect clones.  
 
Line 403-406: In the absence of mitochondrial somatic variation, the use the MutaSeq protocol can be 
used to draw qualitative statements on clonal differentiation capacities (similar to ref. 28, and with an 
improvement over smart-seq2), but due to dropout neither enables the statistically confident assignment 
of cells to clones, nor differential expression testing between clones. 

 
 

 
Response Figure 5. Statistical association between nuclear and mitochondrial mutations. Included in the manuscript 
as Figure S5a. P-values are from a two-sided Fisher test. 

 
2) The co-detection of genomic mutations is low (4-5 mutations out of 14 per cell according to figures 1c and 
S1a). The authors do not show if this is due to technical performance of the primer pool or due to coverage. 
 

To answer this question, we targeted genomic sites on 13 highly expressed genes using our MutaSeq 
protocol and measured the co-detection of these sites in 48 cells. MutaSeq amplicons from all 13 genes 
were co-detected in over 97% of cells. We added supplemental figures which illustrate the enrichment of 
the target amplicons over background (Fig. S1f,g). Thus, we conclude that low expression levels are the 



major driver of target-site dropout, but that the protocol as such does not introduce limitations regarding 
the ability to co-detect mutations. 
 

 
Response Figure 6: Co-detection of amplicons from highly expressed genes. Included in the manuscript as figure 
S1f,g. f. Primer pairs were designed surrounding randomly selected sites on 13 highly-expressed genes in K562 cells 
(Table S5). The MutaSeq protocol was then performed using these primers on n=48 K562 cells. For each gene, the 
number of reads from MutaSeq amplicons (i.e. complete matches) is shown, after subtracting the average coverage 
of the surrounding areas outside of the targeted site (i.e. potential background signal). Seven cells with poor 
alignment rates (below 50%) were removed. g. Amplicon counts for 13 genes across 41 cells is shown as boxplots. 
The points in the overlaid beeswarm plot represent cells. Same underlying data as used in Figure S1f. 

  
3) Previous knowledge is required for the detection of the specific genomic mutations to be analyzed. However, it 
is worth mentioning that MutaSeq would allow retrospective analysis of additional mutations.  

 
We thank the reviewer for this suggestion and have now added a new subchapter demonstrating this 
ability (lines 200-224) and created a new figure S6. 
 

4) The method may be difficult to be upscaled to droplet methods, which are strongly biased towards either 3’ or 
5’ regions, relying in more expensive technologies such as SmartSeq2. 

 
We agree with this point. This is a general problem of all existing single-cell RNA-seq clonal tracking 
protocols that enable a high confidence assignment of individual cells to clones (in particular, also 
TARGET-seq and other mitochondria-based approaches). We now spell this point out clearly in the 
discussion (line 406-410): 
 
The second limitation of MutaSeq is its relatively low throughput. This limitation is currently shared with 
Smart-seq2 and alternative single-cell RNA-seq methods allowing high-confident assignment of cells to 
clones31,33. Future work will focus on the inclusion of full-length coverage of the mitochondrial genome 
in droplet-based single-cell RNA-seq platforms.  
 

5) It requires relative deep sequencing (~788,000 reads per cell). 
 
We have further analyzed the sequencing requirements of MutaSeq, and found that while nuclear 
mutation calling requires deep sequencing, the basic identification of a clonal structure using 
mitochondrial reads does not. We have added a supplementary figure (S5c-e, see also below) and 
highlighted the findings in the main text (line 181-185): 
 
Unlike genomic mutation calling from cDNA, identification of clonal identities from mitochondrial 
mutations (…) is possible at lower sequencing depths (Figure S5c-e), since mitochondrial genes are 
consistently highly expressed. 
 
Deep sequencing is beneficial in the context of LSC characterization for other reasons as well, as we 
now discuss (line 370-374): 
 
Deep transcriptome sequencing. In some cases, the bulk of leukemic cells displays gene expression 
signatures highly similar to stem cells, as observed here for the CD34+ blasts of patient P1. The 



differences between LSCs and residual healthy HSCs are even more subtle. Previous work using 
shallow, microwell based sequencing of AML cells27 has missed differences between LSCs, CD34+ 
blasts and residual healthy HSCs. 
 

 
Response Figure 7, included in the manuscript as figure S5c-e. c. Effect of read depth on mitochondrial clusters. Clusters 
obtained from mitochondrial sites only were computed at full read depth (row “Original clusters”) and are compared to 
clusters obtained using the same methodology from data were single cells were down-sampled to read depths of 500k, 
100k, or 20k per cell (“Downsampled”). Data from Patient 1 is shown. d. Like panel c, but for patient 2 (P2). e. Original 
clustering result and down-sampled clustering result are compared quantitatively using the Rand index. 

 
6) The authors assume that cancer stem cells cannot be separated from healthy stem cells based solely on gene 
expression using a healthy donor as a reference. The authors should investigate if a focused analysis of the 
HSPC compartment would be able to separate the cancer stem cells from healthy stem cells in the different 
patients without relying on mutational information and then compare with the mutational information. 

 
We thank the reviewer for this suggestion. We have now included a focused analysis of the HSPC 
compartment in the results section (line 261-262 and new figure S7f, also shown below). 
 
Our analysis demonstrates that based on gene expression alone cancer stem cells cannot be reliably 
separated from healthy stem cells in an unsupervised analysis: the healthy and cancerous clones 
highlighted in the left panel of the figure below do no separate well. Other processes, such as the onset 
of differentiation and cell cycle, dominate gene expression variability in this compartment (right panels in 
the figure shown below). These processes may be altered upon transition to a cancer state, as in the 
case of patient 2 (see main figure 5a), but this is not always the case. Therefore, the use of mutation-
derived clonal labels is required to draw meaningful statements about the distinct populations. 
 

 

 
Response Figure 8, included in the manuscript as figure S7f: Unsupervised analysis of gene expression data from HSPCs does 
not distinguish between clones. f.uMAP representation of all Healthy HSPC-like cells from patients P1, P2 and P4. Data from 
these cells only were integrated using MNN62 and visualized in two dimensions using uMAP. Left panel: clonal identity is 
highlighted, see also Figure 4e. Right panels: Point color represents the expression of genes involved in differentiation (MPO 
for myeloid differentiation, FCER1A for erythroid/megakaryocytic differentiation) and cell cycle (TYMS, MCM2). 
 

The authors state that the method does not rely on previously known nuclear mutations to detect clones. 
However, although the statement is technically true, they could not define clones using the mitochondrial 
mutations in 2 of the patients (50% of the analysed samples!!). Additionally, the association to the genomic 
mutations is not great because of the dropouts (see below). 
 

We agree, and have made this limitation more explicit in the introduction (line 91-93), discussion (lines 
347-348 and lines 402-403) and results (lines 196-198) sections. Briefly, interindividual variation is an 
important aspect of these analyses. However, we would also like to emphasize that even in the absence 
of mitochondrial variability, qualitative statements can be drawn, to a comparable extent as in GoT-seq 



albeit at lower throughput (Nam et al., ref 28; see discussion, line 404). Regarding the association of 
genomic and mitochochondrial mutations, see our reply to general comment 1 and specific comment 9. 
 

Overall in the manuscript, the Figure legends are quite bare and not very descriptive which makes the 
interpretation difficult and more laborious. A much more detailed description of the figures is needed in the figure 
legends, clearly describing what is shown in each panel and how the data was obtained. Definition of the scales in 
the plots is also typically absent. The output for all the comparisons performed in this work should also be 
included (e.g. comparison of CD34- blasts to HSC/MPP-like cells), all data relevant to the article should be 
deposited (including DNA exome results for colony assays in P1) and the code must be made available. 

 
We greatly appreciate the effort this reviewer has put into helping us make the manuscript better, more 
legible, and reproducible. We have implemented all suggested edits and when required provide further 
explanations below. We have also paid special attention to figure legends and definition of scales. All 
code underlying the analyses is now available in the mitoClone package, available from 
https://github.com/veltenlab/mitoClone which is sufficient to reproduce the major analysis and figures 
presented in the manuscript.  

 
 
Specific Comments 
 
1) The authors indicate in the introduction section that “previous protocols suffer from excessive dropouts, are of 
low throughput and /or require prior knowledge of genomic mutation sites”. This is also the case for this method 
as well. 

 
The point we were trying to make here, is that our approach presents a solution to the problem of 
dropout since clones can be detected based on mitochondrial mutations. These are efficiently covered. 
The clonal identity of each cell is therefore specified at high levels of statistical confidence (Figure 2, 
S3b). Knowledge of genomic mutation sites associated with these clones is not required for the detection 
of clones and can in some cases be identified de novo (Figure S6 and see also general points 1 and 5); 
this information is only used to annotate clones as leukemic or pre-leukemic. To stress more clearly that 
we are not addressing the problem of dropout per gene, but rather the confidence of clonal assignments, 
we have reformulated this statement to 
 
Line 83-84: However, these protocols suffer from a lack of confidence in assigning cells to clones and/or 
require prior knowledge of genomic mutation sites. 
 

2) S1b should be plotted in a normalised way, to be able to compare how many reads are on target (for example 
in reads/100,000 of mapped reads) per cell. 

 
This was the case. We clarified the figure legend and axis label in S1b. 
 

3) Figure legends of figures S1c and S1d should explicitly indicate the meaning of the concentrations.   
 
The change was implemented. 
 

4) Figure 1e.- Define “reference” vs “mutant”. Why does the proportion of the call of the mutation change 
drastically according to the method used in some genes, such as SRSF2? How confident are the authors that the 
“reference” or “mutant” call is not to affected by dropouts of the other allele? 

 
Definitions have now been added to the figure legend. As we discuss in line 154-159 of the manuscript, 
reference calls are potentially dropouts of the mutant allele. This observation motivates the use of 
mitochondrial mutations for reconstructing clonal trees. Furthermore, the possibility of dropouts occurring 
is explicitly accounted for by the statistical method used for identifying clonal hierarchies and assigning 
cells to clones (adapted from Malikic et al., Genome Research 2019). 
In the case of SRSF2, coverage with the MutaSeq protocol is very high, i.e. in most cells both the mutant 
and the reference allele are observed. By contrast, in the Smart-seq2 protocol, individual alleles 
frequently drop out. This explains the discrepancy between the proportions. Estimates of allele 
frequencies are similar in the two methods (figure 1f) since they are based on read counts. 
 
 

5) Why is it that MutaSeq and SmartSeq2 are drastically over estimating some of the point mutations in Figure 1f? 
 
The accuracy of the two methods in estimating allele frequency depends on the coverage of the site of 
interest. We have added this important co-variate to Figure 1f. There is no systematic bias for an over- or 
under-estimation of allele frequencies by either method, except for frameshift mutations, which are 
underestimated (see next point). 



 
6) The authors state that both methods underestimate the abundance of frameshift mutations, likely due to 
nonsense mediated decay. Do the authors actually have evidence for this claim? 

 
We do not provide experimental evidence for this statement. ‘Likely’ was replaced with ‘possibly’ and a 
reference to a literature report investigating this phenomenon in more detail (pubmed ID: 30032986) was 
included. 

 
7) The authors should tone done the statement “MutaSeq efficiently covers both genomic target sites and the 
mitochondrial genome in single-cell RNA-sequencing experiments”. The method improves the results when 
compared to SmartSeq2 but it has a high dropout rate in a large number of genes. 
 

We agree and the statement has been changed to:  
 
Together, these results demonstrate that MutaSeq efficiently covers the mitochondrial genome in single-
cell RNA-sequencing experiments and provides improved coverage of genomic target sites compared to 
SmartSeq2. 
 

 
8) The authors define preleukaemic and leukaemic mutations but they should better 
explain/demonstrate/reference the rationale behind the assignment for each mutation. Also, the first description of 
the status affiliation of the mutations appears at the very end of heading “Simultaneous mapping…” but there are 
references to this classification and separation much earlier in the text. Please clarify earlier on to gain in clarity of 
the article. The authors also mention that leukaemic cells often exist in a cell state that is similar to healthy 
HSC/MPPs. Could it be because these are cells that contain the mutation but they are not transformed into 
leukaemic cells? 
 

We have added background information to the introduction: 
	

Lines 75-77: Pre-leukemic stem cells are thought to typically carry mutations associated with CHIP (for 
example, in Dnmt3a) but not mutations associated with leukemia (for example, in Npm1)7,20,21, potentially 
enabling their identification by profiling both known leukemic and known preleukemic mutations. 
 
We then make clear that the labeling of clones as leukemic or pre-leukemic is based on previously 
known mutations when we first introduce the patients in the results part (lines 148-152): 
 
Bulk exome sequencing of the patients had identified known pre-leukemic mutations present at high 
allele frequency and known leukemic mutations present at a somewhat lower allele frequency (Figure 
2a, Table S1: Patient 1: SRSF2,TET2/CEBPA and SRSF2,TET2/KLF7; Patient 2: DNMT3A/NPM1; 
Patient 3: SRSF2,IDH2; Patient 4: leukemic Trisomy 8 and BRAF mutations). 
 
Finally, we make clear that this assignment is in line with the functional definition of pre-leukemic (i.e. a 
clone preceding leukemia formation that is still capable of healthy blood production): 
 
Lines 187-190: Across the patients, we identified clones carrying known pre-leukemic mutations (e.g. 
SRSF2, DNMT3A) and sub-clones carrying known leukemic mutations (e.g. CEBPA, NPM1) (Figure 
2e,f). Below we definitely characterize these clones as leukemic or pre-leukemic based on their 
contribution to healthy blood production (see Figure 4). 
 
We find the idea that cells may have acquired mutations but not yet transformed interesting, however it is 
beyond the scope of our study to investigate this point further. The view dominating in the field is that 
leukemic cells do exist in a stem-cell like state, whose differentiation is blocked at a later stage. Our data 
do not provide evidence contrary to that view. 

 
9) The detection of the DNMT3A mutation present multitude of dropouts and the association values to the 
mitochondrial mutations are very low. Therefore it is difficult to make any statements or claims about the 
preleukaemic status of cells in patient P2. 
 

We thank this reviewer for raising this point, which we would like to clarify. Despite the significant 
dropout in DNMT3A, we can draw statements for the following reasons: 
Firstly, the clonal hierarchy (with a NPM1 wildtype parental clone and a NPM1 mutated subclone further 
marked by the mitochondrial 5999 T>C mutation) is clearly significant, according to the statistical criteria 
described in lines 552-566 of the methods section. Therefore, the parental NPM1 wildtype clone is 
preleukemic (a clone preceding leukemia formation). 



Second, DNMT3A is one of the best characterized ‘pre-leukemic’ mutations associated with clonal 
hematopoiesis. While it may suffer from high dropout, its association with both the ‘pre-leukemic’ and the 
‘leukemic’ clone, but not the ‘non-leukemic’ clone, is significant, see figure below. We have improved 
visibility of the mutant cells in figure 2c. 
 

 
Response Figure 9: Number of reads of the mutant allele plotted against clonal identity. In the main text, clone 2 is labeled 
as 'pre-leukemic' and clone 3 is labeled as 'leukemic'. P values are from a wilcoxon test. 

 
10) It is unclear in the main text which cells were analysed from which patient. It would be useful to have in the 
main text a brief description of the cells sorted and the quantity of each type used for the analysis. 

 
We agree and have more extensively described the cell types included from each patient (line 142 – 
145). A full overview is presented as figure S2. 

 
11) Include percentages in the boxes in Figure S3a.  
 

Percentages are now included (now Figure S2a). 
 
12) Why weren’t all populations in Figure S3a analysed for the 4 patients? E.g. Cd34-Lin+ cells were not analysed 
for P1 or P4? Why several of the gates are different between the healthy control and patients, such as FSC vs 
SSC (healthy) or CD34+ gate for patient 3. Can the authors explain the rationale? 
 

The healthy control study (Velten et al., 2017) serves as a reference for CD34+ stem and progenitor 
cells. Since the Velten et al. 2017 study focused on HSPCs, SSChi cells, corresponding to mature 
granulocytic cells, were excluded. For this study, we aimed to include both immature and mature blasts 
with SSChi phenotype, and therefore expanded the SSC/FSC gate to include these. 
 
Of further note, the healthy control sample was sorted on a different flow cytometer with slightly different 
settings, making fluorescence values difficult to quantitatively compare to the AML samples. 
 
The lineage cocktail used here contained CD4, CD8, CD19, CD20, CD41a, and CD235a and therefore 
labeled mature T cells, B cells, erythroid, and megakaryocytic cells, but also leukemic cells aberrantly 
expressing these markers (e.g. some of the blasts express CD4 at variable levels). Hence, the lineage 
gate can be highly populated by T cells or blasts (see new figure S2d), depending on the CD4 
expression state of the blasts, which differs between patients. We originally attempted to include Lineage 
positive cells from all patients, however, in P1 and P4, no such cells were covered, possibly due to a low 
abundance relative to leukemic cells. The only effect of the lineage gating scheme used for P1 and P3 
on our data is that the representation of blast subpopulations may be skewed towards CD4-expressing 
blasts in these patients. Our manuscript does not draw quantitative statements on the composition of the 
blast populations and therefore the differences in sorting do not affect the outcome of this study. A brief 
discussion of this aspect was added to the main text (line 142 – 145) and methods (line 444-445). 
 
Finally, the Lin-CD34+ population in P3 appears shifted to higher lineage expression values. Inconsistent 
expression patterns of surface markers are highly common in AML (see van Dongen et al., Leukemia 26, 
1908-1975). 
 

 
13) An additional UMAP plot should be added to the supplementary figures where cells are colored according to 
the gating strategy for each patient. 
 

We thank the reviewer for this suggestion and have added the plot (Figure S2d). 
 
14) Please indicate the methodology followed to obtain the clusters in figures 2b, 2c and 2d. 
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 We have updated the methods section (lines 552-566) and provide the code for clustering mutations into 

clones as part of the mitoClone R package. 
 
15) Could the authors show an example of how the data looked without the mitochondrial mutations included (Fig 
2b and d)? 
 

 The data from figure 2b without the mitochondrial mutations included is shown in figure S3a. The data 
from figure 2d without the mitochondrial mutations included is shown below. In both cases, the same 
basic tree structure (of a parental clone carrying the SPEN, SRSF2 and EAPP mutations and two sub-
clones carrying the CEBPA and KLF7 mutations, respectively) is identified by PhISCS, but the 
confidence of assigning individual cells is lower, due to dropout. This observation motivates the use of 
mitochondrial markers. 
 

 
Response Figure 10: Heatmap of allele frequencies of nuclear mutations from the colony DNA-seq experiment (figure 2d). 
Clustering was obtained using the mitoClone default workflow. 

 
16) The authors claim that there are mutually exclusive mutations such as KLF7 and CEBPA. However, it is 
difficult to define the mutation status of KLF7 in P1 and P3 (or TET2 and even SPEN in other patients) due to the 
high rate of dropouts (as expected from data in Figure 1). How certain can the authors be of this claim? 
 

This appears to be a misunderstanding, mutations in KLF7, CEBPA, TET2 and SPEN are only observed 
in P1 based on exome sequencing (see table S1). Within this specific patient, the KLF7 and CEBPA 
mutations were exclusive to each other both in single-cell RNA sequencing (figure 2b, S3a) and in the 
sequencing of single cell derived colonies (figure 2d). We have re-written this paragraph and removed 
the reference to mutual exclusivity of these mutations to avoid ambiguity. Also note, that although these 
mutations are mutually exclusive in this particular patient, we make no claim that this observation is 
broadly applicable to AML in general. 

 
 
17) The reference or demonstration of the fact that only bona fide mitochondrial mutations are specific to 
individuals should be shown. 
 

We apologize for phrasing this statement as a known fact. What we meant to say was that we developed 
a filtering strategy on the assumption that bona fide mutation are specific to individuals, and we then 
demonstrate that this filtering strategy works in practice, using several validation experiments and control 
datasets. We have now made this clear (lines 163-166) and added further validations of the filtering 
strategy using a number of control datasets (lines 167-174 and new supplementary figure 4) 

 
18) The description of the analysis of mitochondrial mutations is not completely clear. In particular, I find 
confusing the sentence “Individual cells were then called as mutant in these sites if at least 10% of the reads from 
that cell supported a minor allele.”. Please clarify. 
 

This point has been clarified in the methods section (lines 527-536). 
 
Filtering of mitochondrial variants. To identify relevant somatic variants, we implemented the 
mutationCallsFromCohort function. In short, we select coordinates in the mitochondrial genome 
containing at least 5 reads each in at least 20 cells. To distinguish RNA editing events and true 
mitochondrial mutations, we then identify mitochondrial variants that occur in several individuals. 



Individual cells are therefore called as “mutant” in a given genomic site if at least 10% of the reads from 
that cell were from a minor allele (i.e. distinct from the reference). Mutations present in at least 1% of 
cells in a given patient, but no more than 10 cells in any other individual, are then included into the final 
dataset and counts supporting the reference and mutant alleles are computed as for sites of interest in 
the nuclear genome. Mutations present in several individuals are stored as a blacklist and were used 
further for filtering some of the data analyzed in Figure S4. 
 

19) The information relative to the genomic mutation status for TET2 and SPEN is not used in Figure 2 for P1. 
Was this due to the very high rate of dropouts?  
 

The dropout rate of these mutations was very high and they were therefore not included to compute the 
clustering. However, we have now added them as labels to the heatmap in figure 2b since coverage is 
sufficient to demonstrate that they occur exclusively as mutant in the pre-leukemic and leukemic clones. 
 

20) The “healthy” clone of patient P1 is clearly negative for preleukaemic mutation SRF2 but the cells for this 
clone also have the common characteristic of being mostly dropouts for Cebpa. It would be interesting to increase 
the number of SRF2-negative colonies in the DNA-seq (Figure 2d) to fully verify that they are CEBPA-negative. 

 
This is a good suggestion. Unfortunately, no material from this patient is available to implement the 
suggested experiment (we typically receive 3-4 vials per patient from which we perform exome 
sequencing, single-cell RNA sequencing, and any follow up experiments such as colony sequencing). 
The cells in question are mostly CEBPA dropout because there are many T cells in this population; T 
cells don’t express CEBPA, and don’t give rise to colonies in these conditions, explaining the 
discrepancy in the size of this clone between colony and RNA-seq. The evidence for CEBPA being 
mutated downstream of SRSF2 is clear (any alternative hypothesis would require that the CEBPA 
mutation was acquired before the SRSF2 mutation, and later lost again; a highly unlikely scenario for 
which our data presents absolutely no evidence). 
 

21) The legend of figure S2e is not complete. 
 
Apologies. The relevant figure legend has been updated (now figure S4b) 
 

22) Key legends in figure S2f are swapped. 
 
We thank this reviewer for noticing this mistake. The key order is now corrected (now figure S4c). To 
clarify: In the left panel, sites were stratified by RNA mutation calling on the x axis and are color coded 
according to the result of DNA based mutation calling, while the right panel stratifies sites by the result of 
DNA based mutation calling on the x axis and color codes according to RNA based mutation calling. 
 

23) Add the meaning of grey dots in key legend of figure S2g. 
 
The label was added (Now figure S5a). 
 

24) What cell type is the pale yellow cluster in Figure 3a?  
 
These cells correspond to a sub-cluster of CD34+ blasts, which appear to constitute an intermediate 
state between Healthy-like HSC/MPPs and the population with the darker yellow labels. We have now 
labeled the two CD34+ blast clusters AP1 high and AP1 low, based on the expression of FOS/JUN 
genes. Since the high similarity of AP1 low CD34+ blasts and HSPCs impedes a clear separation of 
cancerous and healthy gene expression states here, the following analyses focus on the EGR1 high 
CD34+ blasts cluster, or the HSC/MPP cluster. 
 

25) The population within Fig 3a labelled as “unclear” would be better labelled as “unknown” or “unclassified”. 
 

The label is now changed. 
 

26) It is difficult to distinguish HSC/MPP population from others in the healthy donor in Fig 3c. Please use a 
different colour. 

 
The color is now changed. 
 

27) It is unclear the cells that were used to perform the comparison in Figure 3g. Are the cells within the pale 
yellow cluster included in the category “CD34+ blasts” or only the cells within the dark yellow cluster? Please 
specify and justify the selection. In a similar way, can the authors specify which cells were used for the 
comparisons in figure 3h? According to Table S3, 162 genes obtained a FDR < 0.1; however, the Venn diagram 
in Figure 3h shows 639 genes. How is that possible? According to the Venn diagram in Figure 3h, there are much 



fewer upregulated genes for Cd34- blasts. Is this population then more similar to the HSC/MPP? What about the 
downregulated genes?  

 
Regarding the choice of population, see our reply to the reviewer’s specific point 24. An explanation was 
added to the figure legend. 
Figure 3g vs. Figure 3h (now figure 3i) analyze different aspects of the data. Figure 3g performs a 
focused comparison of only CD34+ EGR1high blasts against HSC/MPP-like cells, in order to identify 
genes that are different between these highly similar populations. Figure 3i identifies ‘highly expressed’ 
genes for each population by comparison with all other populations in the dataset so as to identify genes 
that are shared by all blast populations compared to all other cell types present. We have now made this 
clearer in the text and the figure legend, and also corrected a labeling mistake (labels “62” and “581” 
were flipped; CD34+ blasts are more similar to the HSC/MPP population).  
 

28) Where is the unsupervised analysis to separate HLF+, GATA2+, Flt3+ cells? Please show the output of the 
clustering. Also include RNA expression of genes HLF and Flt3 (in addition to surface marker) in fig S4a. 

 
A summary of the unsupervised analysis is shown in figure 3f, using a visualization that allows 
stratification by patient. We have now included a display of the clustering highlighting RNA expression 
levels of the relevant genes in figure S7f. 

 
29) Gene name S1008 should be included in text as gene for calprotectin. 

 
Gene name was added. 

 
 
30) It is very difficult to appreciate the differences in expression levels in Figure S4a. A different colour code 
should be used. 
 

We thank the reviewer for pointing this out. The color code was changed (now figure S7a). 
 
31) Would it not be better to show a specific marker which highlights the identification of each lineage in FigS4a? 
Along the same lines, Tal1 can be removed as very few cells seem to express this transcription factor. 
 

The set of marker genes included in Fig S7a was changed to use markers more representative of single 
lineages, and this information was added to the panel labels. We further added callouts to Fig. 3e,h and 
S7a-c,f in the context of lineage identification since information contained in these figures also justifies 
the labels used in figure 3a. 

 
32) The statement “Furthermore, all patients retain cells highly similar to healthy HSCs.” should be modified to 
reflect that it is to a different degree in the different patients. 
 

We thank the reviewer for pointing this out. The statement was changed (Furthermore, all patients retain 
cells highly similar to healthy HSCs, although with variable abundance). 

 
33) Please confirm what the dashed line (eclipse) is highlighting in figures 4a to 4d. It is shifted in patients P3 and 
P4. 

The eclipse serves as a guide to the eye to approximately highlight the location of the HSC/MPP 
population, which is accurately plotted on the uMAP in figure 3a. It was not used for any quantitative 
analysis. The figure legend has been clarified. The position in P3 and P4 was corrected. 

 
34) The authors do not show sufficient data about their capacity to detect IDH2 nor NUP188, in terms of dropout 
proportion. The data in this respect in figures 4c and 4d is very difficult to appreciate. Please include similar data 
to figure 1e. 
 

The data is included as new supplementary figure S8a (see also below) and was also added to the main 
text (lines 265-268): 
 
In the absence of mitochondrial somatic variability, we used nuclear mutation calls in SRSF2, IDH2 and 
NUP188 for purely qualitative statements (Patient P3+P4). The capture rates of these marker sites 
ranged from 70% (SRSF2) to 11% (NUP188) (Figure S8a). 
 
To further support the qualitative statements on P3 and P4 included in the manuscript, we here 
additionally underpinned them with quantitative arguments as follows. We refrain from including these 
analyses in the manuscript since they would unnecessarily disturb the read flow in a paragraph that 
focuses on qualitative aspects. 
 



Lines 270-273: Clones associated with leukemic mutations were most prevalent in the blast 
compartments and were also detected in the HSPC compartment, but were almost absent in lymphoid 
(B, NK, T) lineages. In contrast, clones associated with pre-leukemic mutations were found in all 
lineages, but mostly displayed a decreased prevalence in lymphoid lineages (Figure 4e, S8b-d).  
For P3: The p value from a fisher test for the hypothesis “among cells with a successful capture of IDH2, 
observations of the mutated allele are less frequent in lymphoid cells” is 2.3 * 10-6. Covariates impacting 
the capture of IDH2 mutations (IDH2 expression, library quality as quantified by the number of genes 
observed) did not vary significantly between the groups. 
For P4:  Due to the low number of lymphoid cells seen in this patient, no significance is reached, but the 
observation contributes to the trend described ‘across patients’. 

 
Lines 276-277: In patients P1 and P3, leukemic cells had retained the ability to contribute to the erythroid 
lineage. There is even an enrichment of IDH2 mutations in the erythroid precursors from P3 compared to 
all other cells from the patient (p=0.01 using a fisher test). 

 
Response Figure 11, included in the manuscript as figure S8a. Bar chart depicting the percentages of cells covering the 
mutations used for annotating clones in P3 and P4. 

 
 
35) In Figure 4c, it appears as if the higher allele frequency for the leukemic cells (as IDH2) is in the lymphoid 
cluster (T cells/NK cells) but figure 4e indicates that 50% of the cells in the T-cell cluster are non-mutated. How is 
this possible? 
  
 The color scale was flipped in figures 4c and 4d. We have corrected this mistake and apologize for the 

confusion. 
 
36) The authors state that “Across patients, leukemic cells were not observed in lymphoid (B, NK, T) lineages” yet 
figure 4e clearly shows the presence of leukemic cells in the T cluster of cells patients P1, P2 and P3. 
 

We apologize for the confusion. The paragraph has been rephrased  (‘almost absent’, line 271) 
 
37) How significant are the claims that CD96 is expressed higher in leukemic P3, when there are only 
approximately 8 cells within this category? 
 

Despite the low number of cells, the statement “Independent of cell state, these cells further exhibited 
upregulation of CD96, which has previously been identified as a leukemia stem cell specific marker. 
CD96 was also highly expressed on leukemic HSC/MPP-like cells of patient P3, but not in patient P1, 
further illustrating the patient-specific nature of LSC markers (Figure S8e)”, 
is supported by the following statistical tests: 
a) Wilcoxon test comparing Cd96 expression in (n=7) leukemic HSC-like cells from P3 vs. (n=20) 

leukemic HSC-like cells from P1: p =  1.9 * 10-6 
b) Wilcoxon test comparing expression in (n=7) leukemic HSC-like cells from P3 vs. (n=477) HSC—like 

cells from the reference individual: p < 10-16 (healthy HSCs do not express this gene) 
These comparisons were added to the boxplot in Figure S8e. 

 
38) The authors need to take care, they describe the SRSF2 mutation as pre-leukemic but then subsequently 
state that “In patients P1 and P3 (SRSF2 mutated), leukemic cells”. I believe that the authors mean that P1 and 
P3 have the SRSF2 mutation, but it is misleading as currently stated.  

 
The reference to genotypes was removed in order to avoid confusion. 

 
39) The authors claim in P4 the ability to contribute to the erythroid lineage is restricted to pre-leukemic and non-
leukemic clones, however figure 4e show the presence of leukaemic cells in the MEP/erythroid cluster. 
 



There is a single NUP188 mutated CD34+ cell in P4 (see figure 4d), which falls into the MEP/erythroid 
cluster. We now do not comment on the presence of leukemic cells in the MEP cluster in P4: 
 
Line 276-278: For example, in patients P1 and P3, leukemic cells had retained the ability to contribute to 
the erythroid lineage, while in patient P2, this activity was restricted to the pre-leukemic and non-leukemic 
clones. 
 
And instead have briefly commented on the data from P4 in the discussion: 
 
Line 343-346: In patient P4, with one exception, only cells with a mature phenotype displayed leukemic 
mutations, illustrating that the disease can also be fueled by cells with a committed phenotype38.  
Alternatively, the LSC population in this patient might be rare among CD34+ cells. 

 
40) The authors claim that in P4 mutations were only observed in CD34- blasts (and so is reflected in figure 4e) 
however, the UMAP in Fig 4d shows that the allele frequency for NUP188 is 1.0, with high log10 read counts in 
the HSC/MPP region of the UMAP. Can the authors please explain this and clarify in the text. 
 

The color scale was flipped in figures 4c and 4d. We have corrected this mistake and apologize for the 
confusion. 

 
41) In Figure 4e it is important to add information about the total number of cells in each category for each patient. 
 

 A supplementary figure has been added (Figure S8b) that contains this information, and source data 
have been added. In the main figure 4e, cell types are only included if represented by at least 10 cells to 
avoid making misleading impressions. 

 
42) Also in Figure 4e, I wonder if the category “Blasts (CD34- HBZ+)” is labelled correctly since according to 
figure S4a the expression of HBZ is very restricted outside some CD34+ blasts. 
 

The intended meaning of this legend was “CD34- and CD34+HBZ+ blasts”. We have corrected this label. 
 
43) Figure 4e shows that all cells in HSC/MPP compartment of patient P4 are “non AML”. However, figure 4d 
shows allele frequency close to 1 for NUP188 for most cells in the HSC/MPP compartment. How can this be 
possible? 
 

The color scale was flipped in figures 4c and 4d. We have corrected this mistake and apologize for the 
confusion. 

 
44) The authors should tone down the statement “Together, these results demonstrate that leukaemic mutations 
may initiate differentiation blocks at various levels.” Although the results suggest that this could be the case, no 
additional experiments to demonstrate such blockage in differentiation were performed. 

 
We modified the statement to Together, these results indicate that leukemic mutations may initiate 
differentiation blocks at various levels, as previously reported 4,25,35. 

 
45) In figure 5a, the text indicates “high” expression of HFL but data shows barely below 1. Please define the 
scale of expression. 
 

The scale of expression (log-normalized according to Seurat package defaults) is now clarified in this 
and similar figures. Wording in the main text was changed to ‘relatively high’ expression since this 
statement derives from the comparison with the other groups. P-values for comparison were added to 
the figure. 

 
 
46) In Figure 5a there seems to be a typo in the legend, since it seems to relate to patient P2 and not to patient 
P3. 
 

The typo was corrected. 
 

47) In Figure 5a, indicate number of cells for each category. It looks like there are very few cells which could 
affect the interpretation. 

 
The number of cells was indicated. The interpretation is not affected, since all statements drawn from 
this analysis are supported by statistical tests. The p-values were added to the figure. 
 

48) How many cells are involved in the comparisons showed in figure 5b? Are enough cells to reach enough 



statistical power to make those comparisons? This is a general concern across all volcano plots shown in the 
article and should be addressed. 

 
The number of cells per category was 55 pre-leukemic CD34+ cells and 50 leukemic CD34+ cells. In 
figure 5e, the number of cells per category is 105 pre-leukemic or leukemic and 41 non-leukemic cells. In 
figure 3g, 667 Healthy HSPCs are compared to 569 AP1-high CD34+ blasts. The number of cells 
included in the differential expression testing are therefore well aligned with the requirements of the test 
used (Finak et al., 2015). All numbers have been added to table S3. 
 

49) It is difficult to appreciate which genes are differentially expressed in figure 5b. Because of the scale, it looks 
like Hoxb3/CD96 have a logFC close to 0. Indicate the thresholds in the figure and include full results as 
supplementary data. 

 
For all volcano plots, all results are now included in supplementary table 3. Log fold change is only 
included in the figure to demonstrate if the gene is up- or downregulated and a guide was added.  
 

50) The authors discuss the role of KLF7 mutation in HSPC cells from patient P1 (Fig 5d). How many cells are 
included in the each category of the comparison? Have they also looked at the CEBPa clone, as these cells also 
occupy the same cellular population/state?  

 
The raw data underlying figure 5d and S8c,d is shown below and is now included as figure source data 
with the manuscript. Statistical significance was determined for all statements drawn, see asterisks and 
error bars included in the figure. The analysis of the CEBPA clone is shown in figure S8c and the results 
are briefly discussed in the main text (lines 271-273). 
 

Cell type 

Total 
number of 
cells 

Of which 
pre-
leukemic or 
leukemic 

Of which 
leukemic 
(KLF7) 

Of which 
leukemic 
(CEBPA) 

B cells/precursors 18 3 0 0 

CD34- Cells 116 77 25 14 

CD34+ Blasts 880 851 373 236 

HSC/MPPs 34 33 5 15 

MEP/Erythroid 25 22 14 5 

Mitotic HSPCs (G2/M) 13 13 10 2 

Neutrophil precursors 6 4 0 3 

NK cells 94 58 6 0 

T cells 244 60 1 4 
 
 

51) Include full results for the comparison of pre- and leukaemic cells. Indicate the number of cells in each 
category. Also, was it done by patient and/or merging patients?  

 
This analysis was performed for each patient individually and only gave significant hits in the case of P2. 
These are now included in table S3. The number of cells per group is now indicated in the figure legend 
(105 pre-leukemic or leukemic and 41 non-leukemic cells) 
 

52) It would be interesting to know how many cells were included in each category of the comparison of (pre-
)leukemic vs non-AML cells. It is peculiar that so few genes came up as differentially expressed for P2 taking into 
account that these cells appear in very different locations of the UMAP. Also, it is curious that only FOS is 
upregulated out of the rest of AP1 factors. 

 
This is an interesting point. The number of cells has been added to the figure legend. The effects that the 
mutations have on the position in the uMAP are analyzed elsewhere (i.e. Figure 4, 5a,d and S8c,d). The 
tests in figure 5b/e were performed while accounting for the cell type covariate, so as to identify changes 
in genes expression independent of transformations of cell state, as illustrated in figures 5c and 5f. 
Figure legends were clarified and the main text was amended to note that these results are ‘independent 
of cell type’. 



 
53) Please include in Table 1 the data regarding to which regions were targeted for patients P2 and P4. Describe 
the nature of highlighted genes in this table. 

 
The information was included and the highlighting was removed. 
 

54) Consistency is required throughout, the authors use pre-leukemic and preleukemic, one should be chosen 
and used throughout the manuscript.  

 
We now use the term pre-leukemic consistently. 
 

55) After multiple occurrences of a colon in the text a capital letter is used, this should be corrected.  
 
We have corrected these instances. 
 

56) The authors should consider to re-order the panels within the figures and in some cases the figures 
themselves to ensure that they are referred to in a chronological order throughout the text (for example figure S2c 
is mentioned after S2g, fig S3 is mentioned before S2). 

 
Supplementary figures were now reordered to reflect their appearance in the text to the extent possible 
(some supplementary figures are needed in different contexts) 
 

57) Maybe “Unanimously” should be swapped to “unequivocally”. 
 
The term was replaced with ‘statistically confident’ or ‘confident’. 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have done an excellent job of addressing all of the concerns I had raised. The findings 

discussed in the paper are now much more clearly presented. The findings discussed in Figure 4 of 

HSC-like states among leukemic cells is very important. 

Reviewer #2 (Remarks to the Author): 

The revised manuscript has much improved. The addition of the mitoClone R package is indeed 

interesting and provides a useful tool in itself. In line with this, the additional validation for the 

unsupervised identification of clones based solely on the mitochondrial data by using mitoClone is 

certainly attractive since it allows the reanalysis of previously obtained datasets using SmartSeq2 

technology, even if a link with the nuclear somatic mutation cannot be established. 

Most of my comments have been addressed by the authors in the revised manuscript. However, 

there are still a few comments that remain unanswered: 

1. Although the identification of clones is certainly useful, it is the association of the defined clones 

and (pre-)leukaemic mutations that results the most attractive. A clear limitation of the described 

method is the ability to detect some of the nuclear somatic mutations. The limitation may well 

arise from multiple sources such as low expression levels of the gene of interest, the stability of 

this RNA, the nature of the mutation (frameshift, nonsense or missense), the distance to the 

polyadenylated region or the intrinsic complexity/composition of the sequence. This is definitely a 

very important point that must be discussed in the section “Limitations” within the Discussion. 

2. The figure legend of Figure S7f should be clarified to indicate that healthy and (pre-) leukaemic 

cells are included in the UMAP. 

3. Figure S7f and Response Figure 8 are similar but not identical. Explain the discrepancies. This 

UMAP seems to be strongly influenced by cell cycle, as evidenced by the clear separation of cells 

by the expression of TYMS and MCM2. Although there are not many cells labelled as “Cancer”, they 

visually look like they cluster together at the top left and bottom centre of the S7f plot (especially 

cells from patients P2 and P4). The authors should regress/minimise the effect of the cell cycle 

before obtaining the UMAP as it seems that it strongly influences the result. 

4. Regarding the response to specific point 9). The authors enrol in a semantic argument. It is 

widely accepted that the term “preleukaemic” will apply to clones that present a mutation that 

predisposes to the acquisition of a leukaemic phenotype. In the case of P2, there is no dispute 

about the separation of NPM1 WT and NPM1 mutant clone (clones 2 and 3 in Response Figure 9). 

However, I am still not fully convinced of the association of these clones to DNMT3A. The plot in 

Response Figure 9 should also consider the number of WT reads associated to each clone to 

ensure that the increase of mutated reads in clones 2 and 3 is not associated to the actual number 

of cells in which the mutation is detected. Finally, this figure should be included in the 

Supplementary Figures in the manuscript. 

5. The authors state in their rebuttal letter: “Our manuscript does not draw quantitative 

statements on the composition of the blast populations and therefore the differences in sorting do 

not affect the outcome of this study.” However, lines 270-273, figures 4e and S8b-e clearly do 

that. 

Reviewer #3 (Remarks to the Author): 

In their paper "Identification of leukemic and pre-leukemic stem cells 

by clonal tracking from single-cell transcriptomics" the authors 

analyse leukemic stem cells and progenitors using a combination of 

mitochondrial and nuclear SNVs. 

This is a paper of clearly great interest to the field. I was asked to 



specifically comment on the reconstruction of clonal hierarchies and 

analysis of mitochondrial mutations. 

Firstly, I thank the authors for describing the results of their 

evolutionary analyses as clonal hierarchies, which is what they are, 

not phylogenetic trees. In general, their approach is sound and 

considering that even by-eye informatics reveals the clonal 

hierarchies from the absence/presence matrix of SNVs quite clearly, 

one can be confident about the results of their method. 

I have some comments and questions that might help to make the 

manuscript easier to understand for readers. 

General comments: 

The separation of RNA editing events from actual mutations seems 

reasonable. However, the authors state a 97% correct classification 

rate (l168). That should mean that approx. 3% of mutation calls are 

still RNA editing events. In Figure 2b P1 has one additional grey 

clone with only one mutation in a very few number of cells which were 

not found in colony seq. The numbers seem low enough for this to be 

caused by RNA editing events that escaped the filter. Can the authors 

comment on this please? 

I read that "individual cells are therefore called as mutant in a 

given genomic site, if at least 10% of the reads from that cell were 

from a minor allele" (l531). That would suggest that the per-cell VAF 

now has a lower bound of 10%. However, in l541 the authors call a cell 

"mutant" based on a VAF cut-off of 5%. Please clarify this 

contradiction or explain the processing more clearly to the reader to 

avoid misunderstandings. 

The clustering of mutations into clones and assignment of cells is a 

valuable addition. I'm wondering about the likelihood cut-off of 

"smaller than 1 per cell" (l566). This seems arbitrary and the 

documentation of the function in the R package does not provide 

further information. Shouldn't it be possible to create a situation 

where the merged clone and separate clones are two nested models and 

employ a likelihood-ratio test for rejection of the null "same clone"? 

The authors should at least discuss this cut-off or provide a rationale 

for it. 

Minor comments: 

l531 "in a given genomic site": I assume the authors mean site of the mitochondrial genome? 

l562 (equation): sometimes it's N_{cg}, sometimes N_{c,g} (same for M_{cg}). Please 

consistently use the comma (or don't). 

Figure 2: The mutation mt:4693 T>C in panel f) is called mt:4639T>C in panel c). I assume a typo 

in panel f). 

Throughout the ms: the authors introduce the leukemic stem cell (LSC) abbreviation in the intro 

but often (e.g. l87) the full word is used. I would use LSC throughout. 



	
Reviewer	1	
	
The	authors	have	done	an	excellent	job	of	addressing	all	of	the	concerns	I	had	raised.	The	findings	
discussed	in	the	paper	are	now	much	more	clearly	presented.	The	findings	discussed	in	Figure	4	of	
HSC-like	states	among	leukemic	cells	is	very	important.	
	

We	thank	the	reviewer	for	their	kind	words.	
	
Reviewer	2	
	
The	revised	manuscript	has	much	improved.	The	addition	of	the	mitoClone	R	package	is	indeed	
interesting	and	provides	a	useful	tool	in	itself.	In	line	with	this,	the	additional	validation	for	the	
unsupervised	identification	of	clones	based	solely	on	the	mitochondrial	data	by	using	mitoClone	is	
certainly	attractive	since	it	allows	the	reanalysis	of	previously	obtained	datasets	using	SmartSeq2	
technology,	even	if	a	link	with	the	nuclear	somatic	mutation	cannot	be	established.	
	

We	thank	the	reviewer	for	their	kind	words	and	detailed	review.	
	
Most	of	my	comments	have	been	addressed	by	the	authors	in	the	revised	manuscript.	However,	there	
are	still	a	few	comments	that	remain	unanswered:	
1.	Although	the	identification	of	clones	is	certainly	useful,	it	is	the	association	of	the	defined	clones	
and	(pre-)leukaemic	mutations	that	results	the	most	attractive.	A	clear	limitation	of	the	described	
method	is	the	ability	to	detect	some	of	the	nuclear	somatic	mutations.	The	limitation	may	well	arise	
from	multiple	sources	such	as	low	expression	levels	of	the	gene	of	interest,	the	stability	of	this	RNA,	
the	nature	of	the	mutation	(frameshift,	nonsense	or	missense),	the	distance	to	the	polyadenylated	
region	or	the	intrinsic	complexity/composition	of	the	sequence.	This	is	definitely	a	very	important	
point	that	must	be	discussed	in	the	section	“Limitations”	within	the	Discussion.	
	

We	have	now	added	this	point	to	the	limitations	section	as	follows:	
	
In	the	presence	of	mitochondrial	somatic	variation,	an	association	between	clones	and	nuclear	
mutations	is	only	possible	for	mutations	in	highly	expressed	genes,	and	can	be	limited	by	the	
nature	of	the	mutation	(e.g.	frameshift	mutations)	and	possibly	other	factors	such	as	sequence	
complexity.	

	
2.	The	figure	legend	of	Figure	S7f	should	be	clarified	to	indicate	that	healthy	and	(pre-)	leukaemic	
cells	are	included	in	the	UMAP.	
	

The	first	sentence	of	this	figure	legend	has	been	changed	to:	
uMAP	representation	of	all	cells	with	a	healthy	HSPC-like	gene	expression	signature	from	
patients	P1,	P2	and	P4.	These	include	both	healthy	and	pre-(leukaemic)	clones,	see	figure	4.	

	
3.	Figure	S7f	and	Response	Figure	8	are	similar	but	not	identical.	Explain	the	discrepancies.	This	
UMAP	seems	to	be	strongly	influenced	by	cell	cycle,	as	evidenced	by	the	clear	separation	of	cells	by	
the	expression	of	TYMS	and	MCM2.	Although	there	are	not	many	cells	labelled	as	“Cancer”,	they	
visually	look	like	they	cluster	together	at	the	top	left	and	bottom	centre	of	the	S7f	plot	(especially	
cells	from	patients	P2	and	P4).	The	authors	should	regress/minimise	the	effect	of	the	cell	cycle	
before	obtaining	the	UMAP	as	it	seems	that	it	strongly	influences	the	result.	
	

We	 had	 unintentionally	 not	 copied	 the	 final	 figure	 S7f	 to	 the	 reviewer	 response.	We	 had	
changed	the	layout	and	included	a	few	more	genes	in	the	final	figure.	When	looking	into	this	
analysis	again,	we	found	that	the	MNN	algorithm	(Haghverdi	et	al.,	2018)	used	for	this	analysis	
makes	use	of	 random	numbers,	a	behavior	 that	we	had	missed	before	and	 that	 is	also	not	
documented	 in	 the	 fastMNN	package.	Hence,	 the	arrangement	 of	points	 on	 the	 final	 uMAP	
ended	up	slightly	different	(rotated,	etc.)	between	different	runs	of	the	script.	We	now	set	an	
arbitrary	seed	(0xb33f)	 for	the	random	number	generator	to	ensure	 future	reproducibility,	



and	have	updated	figure	S7f	accordingly.	The	other	algorithms	used	in	this	manuscript	either	
do	not	make	use	of	random	numbers,	or	a	seed	was	specified	(e.g.	in	the	uMAP	function).	
While	there	is	a	slight	enrichment	of	cancer	cells	in	some	parts	of	the	plot,	this	just	indicates	
that	leukemic	mutations	do	affect	the	transcriptome,	as	discussed	in	the	context	of	figures	4	
and	5.	It	is	clear	that	positions	in	the	uMAP	cannot	be	used	to	separate	or	identify	cancer	and	
healthy	cells	in	the	absence	of	clonal	labels.		
Cell	cycle	strongly	changes	as	HSCs	begin	to	leave	the	quiescent	state	and	differentiate	(see	e.g.	
Passegué	et	al.,	J	Exp	Med	2005).	Hence,	strong	changes	of	cell	cycle	in	this	compartment	are	
not	 separable	 from	 differentiation	 processes,	 as	 described	 by	 several	 single	 cell	 studies	
previously	(Tusi	et	al.,	Nature	2018,	Giladi	et	al.,	Nature	Cell	Biology	2018,	Velten	et	al.,	Nature	
Cell	Biology	2017).	 It	 is	 therefore	common	practice	 in	the	 field	not	 to	regress	out	cell	cycle	
from	the	analysis.	Due	to	the	strong	correlation	of	cell	cycle	genes	and	priming/differentiation	
genes,	 simply	 excluding	 known	 cell-cycle	 related	 genes	 (from	 the	 Seurat	 package,	 original	
reference:	 Tirosh	 et	 al.,	 Science	 2016)	 from	 the	 analysis	 only	 mildly	 affects	 the	 uMAP	
projection,	as	shown	below.	
	

 
Response Figure 1: uMAP representation of all cells with an healthy HSPC-like expression signature from patients 

P1, P2 and P4. These include both healthy and pre-(leukaemic) clones, see figure 4. Cell cycle associated genes 
(Tirush et al., 2016) were removed from the dataset, data were integrated using MNN and visualized in two 

dimensions using uMAP. Left panel: clonal identity is highlighted, using the same strategy as in Figure 4e.	

	
4.	Regarding	the	response	to	specific	point	9).	The	authors	enrol	in	a	semantic	argument.	It	is	widely	
accepted	that	the	term	“preleukaemic”	will	apply	to	clones	that	present	a	mutation	that	predisposes	
to	the	acquisition	of	a	leukaemic	phenotype.	In	the	case	of	P2,	there	is	no	dispute	about	the	
separation	of	NPM1	WT	and	NPM1	mutant	clone	(clones	2	and	3	in	Response	Figure	9).	However,	I	
am	still	not	fully	convinced	of	the	association	of	these	clones	to	DNMT3A.	The	plot	in	Response	
Figure	9	should	also	consider	the	number	of	WT	reads	associated	to	each	clone	to	ensure	that	the	
increase	of	mutated	reads	in	clones	2	and	3	is	not	associated	to	the	actual	number	of	cells	in	which	
the	mutation	is	detected.	Finally,	this	figure	should	be	included	in	the	Supplementary	Figures	in	the	
manuscript.	
	

While	the	site	of	interest	on	DNMT3A	(irrespective	of	mutant	or	wild	type)	is	detected	with	
at	least	one	read	in	24.5%	of	cells	from	clone	1,	this	is	only	the	case	in	11%	of	cells	from	clone	
2	and	3.	Still,	mutations	are	only	observed	in	clone	2	and	3.		Hence,	the	observation	of	mutant	
reads	in	clone	2+3	is	not	a	consequence	of	a	higher	read	depth	in	these	clones.	We	have	
modified	the	figure	and	statistical	analysis	to	include	covariate	of	total	read	coverage	and	
now	include	it	as	supplementary	figure	5b,	also	shown	below.	We	have	further	expanded	the	
figure	to	also	include	similar	analyses	for	the	SPEN	T2324A	and	TET2	R1452X	mutations	and	
their	association	with	the	(pre-)leukemic	clones	in	patient	P1.	
	



 
Response Figure 2, also included in the manuscript as figure S5b. Association between the lowly covered mutations 
in DNMT3A, SPEN and TET2 with clonal identity. Scatter plot depicts total coverage on the site of interest (x axis) 
and the number of mutant reads (y axis) across n=1066 cells from P2 (left panel) or n=1430 cells from P1 (central 
and right panel).  Note that jitter was added in the x and y direction to avoid overplotting. P values are from a chi-
square test comparing a model where the probability of detecting at least one mutant read was modelled as a 
function of total coverage (null model), or a function of total coverage and identity as a non-AML/upstream clone 
(alternative model).	

	
5.	The	authors	state	in	their	rebuttal	letter:	“Our	manuscript	does	not	draw	quantitative	statements	
on	the	composition	of	the	blast	populations	and	therefore	the	differences	in	sorting	do	not	affect	the	
outcome	of	this	study.”	However,	lines	270-273,	figures	4e	and	S8b-e	clearly	do	that.	
	

This	statement	discusses	the	implication	of	the	use	of	slightly	different	sorting	gates	used	in	
the	different	patients	(Figure	S2).	A	better	wording	is:	
Our	manuscript	does	not	draw	quantitative	statements	on	the	differential	abundance	of	the	
blast	populations	between	patients	and	therefore	the	differences	in	sorting	do	not	affect	the	
outcome	of	this	study.	A	brief	discussion	of	this	aspect	was	added	to	the	main	text	(line	142	–	
145)	and	methods	(line	451-452).	
Figures	4e,	S8b-e	investigate	the	clonal	composition	of	blast	populations	within	single	
patients	and	are	therefore	not	affected	by	the	use	of	slightly	different	sorting	gates	in	the	
different	patients.	

	
Reviewer	#3	(Remarks	to	the	Author):	
	
In	their	paper	"Identification	of	leukemic	and	pre-leukemic	stem	cells	by	clonal	tracking	from	single-
cell	transcriptomics"	the	authors	analyse	leukemic	stem	cells	and	progenitors	using	a	combination	of	
mitochondrial	and	nuclear	SNVs.	
	
This	is	a	paper	of	clearly	great	interest	to	the	field.	I	was	asked	to	specifically	comment	on	the	
reconstruction	of	clonal	hierarchies	and	analysis	of	mitochondrial	mutations.	
	
Firstly,	I	thank	the	authors	for	describing	the	results	of	their	evolutionary	analyses	as	clonal	
hierarchies,	which	is	what	they	are,	not	phylogenetic	trees.	In	general,	their	approach	is	sound	and	
considering	that	even	by-eye	informatics	reveals	the	clonal	hierarchies	from	the	absence/presence	
matrix	of	SNVs	quite	clearly,	one	can	be	confident	about	the	results	of	their	method.	
	

We	thank	the	reviewer	for	their	summary	of	our	work.	
	
I	have	some	comments	and	questions	that	might	help	to	make	the	manuscript	easier	to	understand	
for	readers.	
	
General	comments:	
	
The	separation	of	RNA	editing	events	from	actual	mutations	seems	reasonable.	However,	the	authors	
state	a	97%	correct	classificationrate	(l168).	That	should	mean	that	approx.	3%	of	mutation	calls	are	
still	RNA	editing	events.	In	Figure	2b	P1	has	one	additional	grey	clone	with	only	one	mutation	in	a	
very	few	number	of	cells	which	were	not	found	in	colony	seq.	The	numbers	seem	low	enough	for	this	
to	be	caused	by	RNA	editing	events	that	escaped	the	filter.	Can	the	authors	comment	on	this	please?	
	



Indeed,	this	is	the	only	case	where	a	clonal	identity	is	determined	based	on	a	single	site,	with	
no	 further	 evidence	 from	 other	 mitochondrial	 markers	 or	 genomic	 mutations.	 We	 now	
explicitly	discuss	this	clone	in	lines	228-232:	
We	also	 take	 note	 of	 a	 putative	 non-leukemic	 clone	 in	 P1	marked	 by	 a	 single	mitochondrial	
variant	(5492T>C).	With	one	exception,	all	cells	carrying	this	variant	are	positive	for	the	T	cell	
marker	CD3	(Figure	2b,	see	also	Figure	4a),	but	they	display	diverse	TCR	alpha	and	beta	chain	
sequences	(not	shown).	Hence,	this	variant	was	likely	acquired	in	a	T	cell	precursor,	although	we	
cannot	formally	exclude	that	it	corresponds	to	a	T	cell-specific	RNA	editing	event.	
We	take	note	that	 in	animals,	no	tissue-	or	cell-type	specific	mitochondrial	RNA	editing	has	
been	described	in	literature.	
For	further	clarification	we	now	also	highlight	that	the	97%	classification	rate	is	at	the	level	of	
genomic	sites	(and	not	at	the	level	of	single-cell	mutation	calls),	see	line	167	and	also	the	next	
point.		

	
I	read	that	"individual	cells	are	therefore	called	as	mutant	in	a	given	genomic	site,	if	at	least	10%	of	
the	reads	from	that	cell	were	from	a	minor	allele"	(l531).	That	would	suggest	that	the	per-cell	VAF	
now	has	a	lower	bound	of	10%.	However,	in	l541	the	authors	call	a	cell	"mutant"	based	on	a	VAF	cut-
off	of	5%.	Please	clarify	this	contradiction	or	explain	the	processing	more	clearly	to	the	reader	to	
avoid	misunderstandings.	
	

The	two	steps	‘Filtering	of	mitochondrial	variants’	and	‘Construction	of	clonal	hierarchies’	
described	in	the	methods	have	different	aims.		
	
The	first	step	attempts	to	remove	potential	RNA	editing	events	at	the	level	of	genomic	sites.	
In	that	context,	we	observed	that	variants	with	a	very	low	VAF	were	often	not	following	
clonal	hierarchies,	and	likely	correspond	to	RNA	editing.	Only	for	the	purpose	of	removing	
these	sites,	we	set	a	threshold	that	was	relatively	stringent	(requiring	at	least	10%	of	variant	
reads).	The	output	of	that	step	is	then	a	list	of	‘trustworthy’	genomic	sites.			
	
The	second	step	attempts	to	assign	a	genotype	label	of	‘mutant’	or	‘non-mutant’	to	single	
cells	at	each	genomic	site	that	we	trust	to	be	real	genetic	variants	and	not	RNA	editing	
events.	In	this	case,	we	assume	that	we	are	only	looking	at	true	genetic	variants	and	not	sites	
that	are	RNA	edited.	The	only	sources	of	noise	therefore	are	sequencing	errors	or	inter-well	
contamination,	which	occurs	at	very	low	rates	(Figure	S10).	Hence,	here	we	opted	for	a	lower	
threshold	(requiring	only	5%	of	variant	reads	for	a	mutation	call).		
	
We	have	updated	the	methods	(lines	534-554)	to	make	this	difference	clear.	Furthermore,	in	
the	package	vignette	‘Variant	calling	and	blacklist	creation’,	we	now	provide	additional	
practical	recommendations	on	the	filtering	of	mitochondrial	variants	and	the	choice	of	the	
parameters	involved.		

	
The	clustering	of	mutations	into	clones	and	assignment	of	cells	is	a	valuable	addition.	I'm	wondering	
about	the	likelihood	cut-off	of	"smaller	than	1	per	cell"	(l566).	This	seems	arbitrary	and	the	
documentation	of	the	function	in	the	R	package	does	not	provide	further	information.	Shouldn't	it	be	
possible	to	create	a	situation	where	the	merged	clone	and	separate	clones	are	two	nested	models	and	
employ	a	likelihood-ratio	test	for	rejection	of	the	null	"same	clone"?	The	authors	should	at	least	
discuss	this	cut-off	or	provide	a	rationale	for	it.	
	

We	agree	that	in	theory,	a	likelihood-based	test	would	be	attractive	for	clustering	mutations	
into	clones.	 In	practice,	 it	 is	often	beneficial	 to	group	mutations	 into	clones	even	 if	 there	 is	
some	statistical	evidence	that	 a	 few	cells	display	only	one,	but	not	 the	other	mutation.	For	
example,	using	reasonable	assumptions	on	false	positive	and	false	negative	rate,	it	is	likely	that	
there	are	a	few	cells	in	patient	P1	which	carry	the	CEBPA,	but	not	the	mt:2537G>A	mutation	
(see	figure	2a).	However,	for	purposes	of	differential	expression	analysis	between	clones,	and	
for	providing	interpretable,	meaningful	analyses	throughout	the	manuscript,	there	is	a	clear	
benefit	in	merging	them	into	one	CEBPA	mutated	clone.	The	likelihood	threshold	of	1	per	cell	
simply	serves	as	a	starting	point	to	guide	a	biologically	meaningful	analysis.	
	



The	development	of	a	more	formal	test	would	open	unresolved	statistical	questions.	When	two	
clones	are	merged,	the	optimal	assignment	of	cells	to	clones	changes,	depending	on	the	choice	
of	the	false	positive	and	false	negative	rate	(see	illustration	below).	The	model	employed	in	
our	manuscript	 (Malikic	et	al.,	Genome	Research	2019)	 infers	a	matrix	of	 ‘true’	mutational	
status	per	cell.	Therefore,	if	two	mutations	are	merged	into	a	clone,	the	new	model	will	have	
one	free	parameter	less	per	cell.	However,	at	the	same	time	this	matrix	is	subject	to	constraints	
so	as	to	enforce	a	hierarchical	relationship	between	the	mutations.	Hence,	 the	difference	 in	
degrees	of	freedom	between	the	models	is	non-trivial	to	estimate.	Bayesian	approaches	such	
as	described	by	Zafar	et	al.,	Genome	Reseach	2019	and	Jahn	et	al.,	Genome	Biology	2016	might	
constitute	a	starting	point	for	model	comparison.	In	practice,	however,	the	optimization	of	a	
likelihood	through	integer	linear	programming	(Malikic	et	al.,	Genome	Research	2019),	which	
form	the	basics	of	the	clonal	hierarchy	reconstruction	employed	here,	has	clear	advantages:	It	
always	converges	to	the	optimal	solution,	unlike	MCMC	approaches;	it	is	faster;	and	it	is	easier	
to	use.		
	
We	have	adapted	the	manuscript	(lines	565-586	and	legend	to	figure	2e)	to	make	clear	that	an	
arbitrary	cutoff	is	used,	and	we	now	in	the	package	vignette	‘Computation	of	clonal	hierarchies	
and	clustering	of	mutations’	provide	further	practical	recommendations	on	the	clustering	of	
mutations.	
	
	
	

 
Response Figure 3: Merging of clones results in different maximum likelihood assignments of cells to clones. P(y|x) 
is the probability of observing y when the true status is x (e.g. observing a mutation when in reality only reference 

alleles are present). Due to constraints applied on the matrix x, an estimation of degree of freedoms between 
model 1 and model 2 is non-trivial.	

	
Minor	comments:	
	
l531	"in	a	given	genomic	site":	I	assume	the	authors	mean	site	of	the	mitochondrial	genome?	
	

For	clarity,	the	wording	was	replaced	by	‘in	a	given	site	of	the	mitochondrial	genome’		
	
l562	(equation):	sometimes	it's	N_{cg},	sometimes	N_{c,g}	(same	for	M_{cg}).	Please	consistently	use	
the	comma	(or	don't).	
	

We	now	consistently	don’t	use	the	comma.	
	
	
Figure	2:	The	mutation	mt:4693	T>C	in	panel	f)	is	called	mt:4639T>C	in	panel	c).	I	assume	a	typo	in	
panel	f).	
	



The	typo	was	fixed	in	panel	f.	
	
Throughout	the	ms:	the	authors	introduce	the	leukemic	stem	cell	(LSC)	abbreviation	in	the	intro	but	
often	(e.g.	l87)	the	full	word	is	used.	I	would	use	LSC	throughout.	
	

We	agree	that	this	will	improve	consistency	and	now	use	LSC	throughout.	
	
	
	



REVIEWERS' COMMENTS 

Reviewer #2 (Remarks to the Author): 

The authors have satisfactorily addressed my comments. 

I only have a minor remark related to my comment #3, regarding the regression of the cell cycle 

effect. The authors state that they removed genes associated to the cell cycle from the analysis. I 

believe that it would have been a better approach to obtain a cell cycle score using the cell cycle 

genes and regress out this score. However, I agree with the results presented by the authors. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed all my concerns sufficiently. The findings in the manuscript are now 

more clearly presented. I thank the authors for their efforts.



Response to final reviewer comments 

Reviewer #2 (Remarks to the Author): 

The authors have satisfactorily addressed my comments. 

I only have a minor remark related to my comment #3, regarding the regression of the cell cycle effect. The 
authors state that they removed genes associated to the cell cycle from the analysis. I believe that it would 
have been a better approach to obtain a cell cycle score using the cell cycle genes and regress out this 
score. However, I agree with the results presented by the authors. 

We thank the reviewer for their detailed review. We consider removal of cell cycle genes, and not 
regression of cell cycle, to be standard practice in single cell analyses of bone marrow since 
differentiation and cell cycle are closely linked in this system (see Tusi et al., Nature 2018, Giladi 
et al., Nature Cell Biology 2018, Velten et al., Nature Cell Biology 2017).

Reviewer #3 (Remarks to the Author):

The authors have addressed all my concerns sufficiently. The findings in the manuscript are now more 
clearly presented. I thank the authors for their efforts.

We thank the reviewer for their review and helpful suggestions.


